가

가 가 Mincer 가 가 가 가 가 가 가 가 가 가 가 가 1) 가 (intergenerational mobility) 가 * *** Grey Market Data Solution Consultant

- 1 -

(private rate of return)

1)

2) 가 가 가 가 가 가 (가 3) 가 . 가 가 가 가 가 , 가 가 가 가 가 . 2 가 5 3 5 . 4 2) Mincer Mincer 가

3) Mincer

- 2 -

가 4) Mincer 가 Mincer $\ln y_i = \beta_o + \beta_1 S_i + \beta_2 A_i + \varepsilon_i$ (1) S , A (ability) (1) 가 (The genetic transmission of ability from parents) (nepotism) 가 5) 가 (1) 가 A가 (omitted variable bias)"6) 7). A 가 A $A_i = \gamma_f F_i + A_i^u$ (2) 4) (1994)(1982), (1983), 8.1, 11.6 5.1, 9.4, 6.9, 7.0

David Lam and Robert F. Schoeni(1993), David Lam and Robert F. Schoeni(1994), J.T Liu and

5 15%

가

- 3 -

David Lam and Robert F. Schoeni(1993)

J.K. Hammit and CJ Lin(1999)

6)

7)

```
F
                       Mincer
(2)
      (1)
             \ln y_i = \beta_o + \beta_1 S_i + \beta_2 (\gamma_f F_i + A_i^u) + \varepsilon_i
                                                                                            (3)
      (3)
                                                                                                     가
                                                             가
                                                   8)
                                                                                                    가
                                                                                        가
                          가
                                                                                 가
         가
                                                                        9)
                                                          가
                                                                              10).
                                                        가
                  가
                                                                              (正)
                                                  가
                                                              가
                                                                                             11)
                                                                                                     12).
               가
                                                                                        가
                                                                               Becker
"positive assortative mating"
                                                                                                       가
                                              13).
8) Mincer
                                   (A)
   Griliches (1977)
9)
                           (physic cost)
10)
                           Leibowitz(1974)
                                               Murnane et al(1981)
         G. Becker
                                      "positive assortative mating"
                                                                                     Welch (1974)
11)
                              Benham (1974)
12)
                   Lam and Schoeni(1993)
```

- 4 -

13)

. Mincer

$$\ln y_i = \beta_o + \beta_s S_i + \beta_f F_i + \beta_w W_i + \varepsilon_i \tag{4}$$

W 가 가 ()

가 .

1.

(5) .

David Lam and Robert Schoeni (1994) 1982 PNAD(Pesquisa Nacional por Amostra de Domicilios) $^{14)}$.

$$\ln y_{i} = \beta_{o} + \beta_{1}S + \beta_{2}WS + \beta_{3}FS + \beta_{4}WFS + \beta_{5}AGE + \beta_{6}AGE^{2} + \beta_{7}White$$
 (5)

S, WS , FS WFS . A GE White 1 0

. 14) 10 가 가 가 . 가 15)フト 7 1> 1> . < 0.163 가 0.112 31.2% 가 1> 가 가 가 1> 가 가 0.171 0.230 가 16). 2 David Lam and Robert Schoeni(1994) 1988 PSID(Panel Study of Income Dynamics) 2> 15) , literate, 1-3 years, 4 years, 5-8 years, 9-11 years, 16) 17 (David Lam and Robert Schoeni(1993))

가

0.099

0.071 28.3%

< 1>

	Reg 1	Reg 2	Reg 3	Reg 4	Reg 5	Reg 6
	0.163 (0.001)	0.147 (0.001)	0.144 (0.001)	0.137 (0.001)	0.124 (0.001)	0.112 (0.001)
					0.057 (0.001)	0.046 (0.001)
Literate		0.081 (0.010)		0.064 (0.010)		0.055 (0.010)
1 3 years		0.156 (0.010)		0.096 (0.011)		0.089 (0.011)
4 years		0.281 (0.013)		0.182 (0.013)		0.163 (0.013)
5 8 years		0.277 (0.024)		0.164 (0.024)		0.135 (0.024)
9 11 years		0.414 (0.028)		0.264 (0.029)		0.233 (0.029)
		0.450 (0.030)		0.292 (0.032)		0.256 (0.031)
Literate			0.108 (0.010)	0.099 (0.010)		0.065 (0.010)
1 3 years			0.217 (0.010)	0.192 (0.010)		0.138 (0.010)
4 years			0.341 (0.012)	0.286 (0.013)		0.195 (0.013)
5 8 years			0.397 (0.023)	0.339 (0.023)		0.211 (0.023)
9 11 years			0.510 (0.027)	0.422 (0.028)		0.264 (0.028)
			0.552 (0.030)	0.462 (0.032)		0.287 (0.032)
	0.066 (0.006)	0.068 (0.006)	0.066 (0.006)	0.067 (0.006)	0.073 (0.006)	0.073 (0.006)
() ²	- 0.001 (0.000)	-0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	-0.001 (0.000)	- 0.001 (0.000)
	0.230 (0.008)	0.205 (0.008)	0.196 (0.008)	0.184 (0.008)	0.201 (0.008)	0.171 (0.008)
	3.036 (0.124)	2.979 (0.123)	2.995 (0.122)	2.958 (0.122)	2.795 (0.006)	2.775 (0.006)
R^{2}	0.527	0.534	0.540	0.543	0.546	0.554

:()

[:] David Lam and Robert Schoeni(1994)

가 가 0.107 0.166 가 가 가 3 Liu et.al (1999) 1990 Human Resource Utilization Survey (6) $\ln y_{i} = \beta_{o} + \beta_{1}S + \beta_{2}WS + \beta_{3}FS + \beta_{4}MS + \beta_{5}AGE + \beta_{6}AGE^{2} + \beta_{7}City + \beta_{8}Public$ (6) S, WS, FS, MS 4 5 Public. City 1, 가 0 1 0 가 가 18). 3> 17) 1082 가 가 18)

- 8 -

가

. 가

, , , . . .

,

.

4 가 가 가 가 . 가 가 .

. Hechman and Hotz(1986) . 25%

Behrman and Wolfe(1984) .

. . 가

				- ·		
	Reg 1	Reg 2	Reg 3	Reg 4	Reg 5	Reg 6
	0.099 (0.005)	0.088 (0.005)	0.093 (0.005)	0.083 (0.006)	0.082 (0.006)	0.071 (0.006)
					0.036 (0.007)	0.030 (0.007)
6-8 years		0.046 (0.054)		0.049 (0.054)		0.051 (0.054)
9-11 years		0.129 (0.062)		0.128 (0.062)		0.127 (0.062)
12 years		0.208 (0.058)		0.203 (0.058)		0.200 (0.058)
>12, no BA		0.261 (0.069)		0.250 (0.069)		0.246 (0.069)
BA or more		0.240 (0.068)		0.227 (0.068)		0.213 (0.068)
Don't know		0.126 ^y (0.067)		0.135 (0.067)		0.137 (0.067)
6-8 years			0.025 (0.058)	0.015 (0.057)		- 0.001 (0.057)
9-11 years			0.074 (0.065)	0.054 (0.065)		0.034 (0.065)
12 years			0.083 (0.059)	0.053 (0.059)		0.023 (0.059)
>12, no BA			0.162 (0.070)	0.136 (0.070)		0.090 (0.070)
BA or more			0.148 (0.068)	0.113 (0.068)		0.054 (0.069)
Don't know			- 0.007 (0.076)	0.001 (0.075)		0.004 (0.075)
	0.056 (0.021)	0.064 (0.021)	0.060 (0.021)	0.066 (0.021)	0.054 (0.021)	0.062 (0.021)
() ²	- 0.001 (0.000)	-0.001 (0.000)	- 0.001 (0.000)	0.001 (0.000)	-0.001 (0.000)	- 0.001 (0.000)
	0.166 (0.029)	0.126 (0.029)	0.140 (0.030)	0.107 (0.030)	0.160 (0.028)	0.113 (0.030)
	- 0.384 (0.426)	-0.530 (0.427)	0.438 (0.430)	- 0.569 (0.430)	-0.575 (0.425)	0.707 (0.430)
R^{2}	0.209	0.223	0.214	0.226	0.220	0.233

:()

: David Lam and Robert Schoeni(1994)

	Reg 1	Reg 2	Reg 3	Reg 4	Reg 5	Reg 6
	3.307 (12.45)	3.23 (12.07)	3.28 (12.29)	3.22 (12.0)	2.92 (10.75)	2.86 (10.42)
	0.065 (4.30)	0.066 (4.38)	0.065 (4.33)	0.066 (4.39)	0.049 (3.23)	0.051 (3.35)
() ²	- 0.0008 (- 3.79)	-0.0008 (-3.85)	- 0.0008 (- 3.80)	-0.0008 (-3.85)	- 0.0005 (- 2.44)	-0.0006 (-2.56)
	0.064 (2.11)	0.060 (1.97)	0.065 (2.12)	0.064 (2.08)	0.049 (1.62)	0.049 (1.61)
	0.108 (2.69)	0.116 (2.89)	0.113 (2.80)	0.116 (2.85)	0.096 (2.40)	0.104 (2.60)
	0.116 (2.83)	0.094 (2.27)	0.107 (2.60)	0.091 (2.21)	0.095 (2.31)	0.076 (1.83)
	0.175 (4.43)	0.128 (3.12)	0.156 (3.86)	0.125 (3.01)	0.121 (2.85)	0.081 (1.84)
(0.301 (5.58)	0.238 (4.21)	0.278 (4.99)	0.235 (4.12)	0.203 (3.44)	0.151 (2.45)
)	0.366 (5.93)	0.238 (4.21)	0.278 (4.99)	0.235 (4.12)	0.203 (3.44)	0.151 (2.45)
	0.695 (4.43)	0.549 (3.32)	0.639 (3.91)	0.529 (3.18)	0.509 (2.99)	0.367 (2.10)
		0.090 (1.61)		0.087 (1.51)		0.072 (1.27)
		0.084 (2.29)		0.075 (1.98)		0.060 (1.60)
		0.173 (3.05)		0.167 (2.85)		0.148 (2.53)
		0.177 (2.54)		0.194 (2.56)		0.181 (2.42)
		0.232 (2.35)		0.251 (2.39)		0.210 (2.02)
		0.285 (3.00)		0.301 (2.94)		0.272 (2.69)
			0.024 (0.482)	0.002 (0.031)		0.015 (0.31)
			0.063 (2.21)	0.031 (1.041)		0.031 (1.06)
			-0.011 (-0.145)	- 0.113 (- 1.41)		- 0.122 (- 1.54)
			0.072 (0.66)	- 0.061 (0.52)		- 0.040 (- 0.35)
			0.214 (1.42)	0.064 (0.40)		0.033 (0.21)

< 3>

		Reg1	Reg2	Reg3	Reg4	Reg5	Reg6
						0.565 (2.19)	0.581 (2.27)
						0.609 (5.39)	0.592 (5.23)
						0.597 (5.07)	0.577 (4.90)
						0.702 (5.88)	0.675 (5.65)
						0.779 (5.99)	0.746 (5.72)
						0.807 (5.71)	0.787 (5.54)
\mathbb{R}^2	!	0.113	0.127	0.118	0.131	0.145	0.164

:() t.

: Liu et.al (1999)

•

1.

e a 1 1998 .

가 가 .

가

가 3 . 1

1

2,356 가 . 37.8

129 . 『 』 가 가 가

481 .

2

. 2 31.4 113 . 3 2 가

가 가 275 3 35 127 1 가 4> 가 19) 10.6 가 15.1 가 2 가 가 가 0.5 , 가 1 가 0.9 , 가 가 가 가

< 4>

(558)	(869)	(364)	(363)	(161)
10.563	12.675	13.115	14.063	15.093
(3.715)	(2.690)	(2.606)	(2.319)	(2.263)
120.097	133.911	125.412	131.752	163.491
(63.151)	(64.184)	(62.164)	(68.942)	(81.628)
44.480	38.012	34.203	32.854	34.311
(10.930)	(9.928)	(9.179)	(8.704)	(7.396)

: 1) 2) ()

フト フト フト < 5> 2

20) 7 (column) (row) , , . .

가 .

가 가 .

가 가

가 68% .

< 5> (2)

1.

1	-	1	-	-	-	0.013	-	0.010	-	-	-
10	2		-	-	-	0.132	0.014	-	-	-	-
13	8	7	1	-	-	0.171	0.056	0.071	0.009	-	-
36	85	41	54	2	10	0.474	0.594	0.414	0.470	0.286	0.244
2	18	24	26	-	3	0.026	0.126	0.242	0.226	-	0.073
10	27	24	32	5	24	0.132	0.189	0.242	0.278	0.714	0.585
4	3	2	2	-	4	0.053	0.021	0.020	0.017	-	0.098
76	143	99	115	7	41	 1	1	1	1	1	1

2.

2	_	_	_	_	_	 0.014	_	_	_	_	_
12	-	-	-	-	-	0.087	-	-	-	-	-
19	10	-	-	-	-	0.138	0.052	-	-	-	-
65	101	41	20	-	1	0.471	0.523	0.456	0.377	-	0.200
10	35	16	12	-	-	0.072	0.181	0.178	0.226	-	-
27	41	31	20	2	1	0.196	0.212	0.344	0.377	1.00	0.200
3	6	2	1	-	3	0.022	0.31	0.022	0.019	-	0.600
138	193	90	53	2	5	1	1	1	1	1	1

,

가 가가 .

2 40% .

- 14 -

< 6> 3 , , , 21). 2

.

< 6> 가 가 (3) 1.

1	-	1	-	-	-		0.018	-	0.019	-	-	-
8	1	-	-	-	-		0.143	0.014	-	-	-	-
12	6	6	-	-	-		0.214	0.081	0.111	-	-	-
23	45	17	31	1	4		0.411	0.608	0.315	0.456	0.333	0.182
2	3	12	16	-	2		0.036	0.041	0.223	0.235	-	0.091
7	17	17	19	2	12		0.125	0.230	0.315	0.279	0.667	0.545
3	2	1	2		4		0.054	0.027	0.019	0.029		0.182
56	74	54	68	3	22	-	1	1	1	1	1	1

2.

 2	-	-	-	-	_	0.021	-	-	-	-	-
9	-	-	-	-	-	0.093	-	-	-	-	-
16	8	-	-	-	-	0.165	0.086	-	-	-	-
42	46	23	10	-	-	0.433	0.495	0.442	0.333	-	-
6	13	9	7	-	-	0.062	0.140	0.173	0.233	-	-
19	23	18	12	2	3	0.196	0.247	0.346	0.400	1.000	1.000
3	3	2	1			0.031	0.032	0.038	0.033		
97	93	52	30	2	3	1	1	1	1	1	1

3.

-	-	-	-	1	1	 -	-	-	-	0.050	0.031
-	1	-	8	-	-	-	0.26	-	0.62	-	-
2	6	6	5	5	-	0.286	0.154	0.122	0.38	0.250	-
1	14	23	61	6	16	0.143	0.359	0.469	0.469	0.300	0.500
2	5	5	18	-	5	0.286	0.128	0.102	0.138	-	0.156
2	11	12	34	7	8	0.286	0.282	0.245	0.262	0.350	0.258
	2	3	4	1	2		0.051	0.061	0.031	0.050	0.065
7	39	49	130	20	32	1	1	1	1	1	1

4.

-												
-												
	-	1	1	-	-	-	-	0.008	0.028	-	-	-
	2	6	1	-	-	-	0.027	0.050	0.028	-	-	-
	8	12	1	2	-	1	0.110	0.101	0.028	0.067	-	0.067
	26	54	14	19	-	7	0.356	0.454	0.389	0.633	-	0.467
	10	15	5	3	-	2	0.137	0.126	0.139	0.100	-	0.133
	25	21	14	6	2	5	0.342	0.176	0.389	0.200	1.000	0.333
	2	10	-	-	-	-	0.027	0.084	-	-	-	-
	73	119	36	30	2	15	1	1	1	1	1	1

. 가 가 가 ,

가 .

r <u>a</u> 3

가 .

2.

가.

. Mincer

$$\ln y_{i} = \beta_{o} + \beta_{s} S_{i} + \gamma_{1} A GE + \gamma_{2} A GE^{2} + \beta_{f} F S_{i} + \beta_{n} N_{i} + u_{i}$$
 (7)

FS , , , , , , , S

. N 가

22). 7\ 7\ 23).

7% 24). 15% フト (8%) .

가 . < 5> 가 0.10

 22)
 가 가

 (5)
 가 가

. 가

. . .

24) 1981 가

가 0.07 가 가 . < 5> 0.069 0.069 가 0 10% S 가 가 가 가 가 가 가 가 가 가 7> 가 가 (financial constraints)

가

4>

1960

가

가

< 7> (N=2356)

	Reg 1	Reg2	Reg3	Reg4
	- 3.500 (- 31.989)	-3.475 (-31.292)	-3.168 (-28.386)	- 3.158 (- 27.886)
	0.069 (24.322)	0.069 (23.235)		
	0.099 (18.286)	0.098 (17.964)	0.101 (18.638)	0.101 (18.469)
() ²	- 0.001 (- 16.348)	- 0.001 (- 16.156)	- 0.001 (- 16.584)	- 0.001 (- 16.498)
가	0.103 (5.295)	0.104 (5.305)	0.109 (5.650)	0.111 (5.720)
			0.155 (3.665)	0.155 (3.668)
			0.457 (12.249)	0.461 (12.336)
			0.544 (12.027)	0.550 (12.092)
			0.706 (17.963)	0.708 (17.740)
		- 0.024 (- 0.937)		- 0.034 (- 1.331)
		- 0.033 (- 1.245)		- 0.018 (- 0.674)
		- 0.115 (- 1.718)		- 0.154 (- 2.287)
		0.053 (1.406)		0.043 (1.101)
R^2	0.329	0.330	0.322	0.324

フト? < 8> . < 8> 2,356 가

가 30% 가 8%

가

가 . 가

. 가

. 0.144 0.058

가 가 .

< 8>

	- 2.907	- 3.563	- 3.434	- 4.264	- 2.968
	(- 11.063)	(- 18.020)	(- 11.244)	(- 15.617)	(- 5.192)
	0.0640	0.0748	0.0602	0.0661	0.0794
	(11.728)	(14.607)	(7.235)	(6.691)	(5.463)
	0.0744	0.0988	0.1057	0.1442	0.0575
	(6.347)	(10.352)	(6.543)	(9.676)	(1.890)
() ²	- 0.00082	-0.00106	- 0.00122	- 0.00168	-0.00041
	(- 6.272)	(-9.152)	(- 5.786)	(- 8.447)	(-1.032)
	0.1418	0.0927	0.0792	0.0983	0.0858
가	(3.139)	(3.020)	(1.680)	(1.965)	(1.237)
R^2	0.289	0.315	0.262	0.399	0.354
OBS	558	869	364	363	161

: () t .

가 가 . ,

가 , 가

• 0

481 . < 9> .

1 가 . 가

, 가

< 9> (n=481)

		Reg1	Reg2	Reg3	Reg4
		- 3.223 (- 15.278)	-3.191 (-14.746)	- 3.260 (- 14.824)	- 3.244 (- 14.470)
		0.0566 (8.134)	0.0542 (7.464)	0.0528 (7.215)	0.0525 (7.074)
		0.0875 (7.589)	0.0867 (7.434)	0.0892 (7.571)	0.0887 (7.456)
	() ²	-0.00087 (-5.646)	- 0.00086 (-5.535)	- 0.00088 (- 5.643)	-0.00087 (-5.568)
	가	0.1250 (3.049)	0.1241 (3.006)	0.1301 (3.146)	0.1302 (3.117)
			0.0141 (0.292)		0.0014 (0.028)
			0.0022 (0.047)		- 0.0204 (- 0.426)
			0.0289 (0.195)		0.000092 (0.001)
			0.0906 (1.324)		0.0269 (0.308)
				0.0461 (0.972)	0.0467 (0.955)
				0.0462 (0.787)	0.0565 (0.826)
				0.0974 (1.434)	0.0945 (1.146)
				0.1988 (1.300)	0.1717 (0.989)
	R ²	0.353	0.350	0.352	0.347

:() t.

, . 가

가 . 가

가 .

. 가

, 가

(7)

$$\ln y_{i} = \beta_{o} + \beta_{s} S_{i} + \gamma_{1} A GE + \gamma_{2} A GE^{2} + \beta_{f} F_{i} + \beta_{w} W_{i} + \beta_{n} N_{i} + \xi_{i}$$
(8)

F W フト

. N 가 . 가 . 가 . .

가

· , , , , , , , 26).

< 10> 7

. < 10> 가 . Reg

1 Reg 2 Reg 3 . Reg 5

가 Reg 6 가 . < 10> 가

. 1 2

25) .

26)

가 10> 가 0.08 0.06 10> 5.87% 5.52% , 5.96% 가 < 10> . Reg 5 가 5.60% 5.79% 3 가 가 가 가 가 가 11> < 가 가 (30%) (18%) 가 3 15% 가 (convex) < 11> 가

< 10>

	Reg1	Reg2	Reg3	Reg4	Reg5	Reg6
	-3.133 (-10.913)	-3.072 (-10.222)	- 3.068 (- 10.395)	- 3.059 (- 10.060)	- 2.965 (- 9.478)	- 2.998 (- 9.355)
	0.0587 (6.743)	0.0587 (6.391)	0.0583 (6.376)	0.0579 (6.217)	0.0560 (5.994)	0.0552 (5.828)
	0.0831 (5.598)	0.0808 (5.313)	0.0807 (5.342)	0.0807 (5.256)	0.0782 (5.033)	0.0795 (5.047)
()	-0.00082 (-4.292)	-0.00080 (-4.142)	-0.00079 (-4.131)	-0.00080 (-4.107)	- 0.00078 (- 3.990)	-0.00080 (-4.004)
가	0.0883 (1.553)	0.0861 (1.511)	0.0944 (1.641)	0.0884 (1.532)	0.0820 (1.405)	0.0849 (1.427)
		0.0408 (0.594)		0.0447 (0.641)	0.0487 (0.695)	0.0562 (0.794)
		- 0.0816 (- 1.226)		- 0.0762 (- 0.973)	- 0.0743 (- 0.946)	- 0.0630 (- 0.788)
		0.2295 (0.982)		0.2376 (1.012)	0.2798 (1.187)	0.3050 (1.274)
		0.0358 (0.370)		0.0187 (0.144)	0.0149 (0.113)	0.0222 (0.166)
			-0.0530 (-0.799)	- 0.0195 (- 0.256)	- 0.0303 (- 0.396)	- 0.0397 (- 0.511)
			-0.0087 (-0.107)	0.0220 (0.215)	0.0120 (0.117)	0.0099 (0.095)
			-0.3517 (-1.234)	- 0.3664 (- 1.189)	-0.3019 (-0.975)	- 0.3320 (- 1.056)
			0.3336 (1.403)	0.3192 (1.209)	0.3262 (1.224)	0.3164 (1.168)
					0.0290 (0.383)	0.0279 (0.337)
					-0.1173 (-1.422)	0.0122 (0.167)
					0.4103 (1.424)	- 0.0685 (- 0.560)
					-0.0037 (-0.034)	0.0543 (0.484)
						0.0301 (0.376)
						- 0.1034 (- 1.102)
						0.4102 (1.406)
						- 0.0146 (- 0.113)
R^2	0.320		0.321	0.321	0.322	0.315
OBS	277		277	277	277	277

:() t.

< 11> 2

	Reg 1	Reg2	Reg3	Reg4	Reg5	Reg6
	-3.136 (-10.054)	-3.109 (-9.615)	- 3.099 (- 9.720)	-3.112 (-9.530)	- 3.054 (- 9.155)	- 3.083 (- 8.965)
	0.0893 (5.938)	0.0881 (5.749)	0.0878 (5.748)	0.0882 (5.708)	0.0861 (5.511)	0.0870 (5.496)
() ²	-0.00088 (-4.593)	-0.00087 (-4.500)	-0.00087 (-4.479)	-0.00088 (-4.481)	- 0.00086 (- 4.382)	-0.00087 (-4.372)
가	0.1013 (1.764)	0.1008 (1.756)	0.1087 (1.870)	0.1044 (1.795)	0.0994 (1.690)	0.1010 (1.688)
	0.3255 (2.246)	0.3160 (2.179)	0.3230 (2.230)	0.3153 (2.173)	0.3286 (2.262)	0.3415 (2.283)
	0.6141 (4.746)	0.6194 (4.779)	0.6177 (4.773)	0.6215 (4.793)	0.6322 (4.863)	0.6274 (4.707)
	0.6732 (4.666)	0.6805 (4.648)	0.6778 (4.680)	0.6811 (4.648)	0.6790 (4.629)	0.6698 (4.456)
	0.7572 (5.714)	0.7466 (5.544)	0.7718 (5.772)	0.7593 (5.626)	0.7478 (5.534)	0.7473 (5.415)
	0.9361 (5.541)	0.9247 (5.377)	0.8336 (4.562)	0.8355 (4.565)	0.8383 (4.564)	0.8359 (4.488)
		0.0543 (0.770)		0.0541 (0.754)	0.0617 (0.857)	0.0673 (0.925)
		- 0.0686 (- 1.019)		- 0.0669 (0.846)	- 0.0639 (- 0.807)	- 0.0526 (- 0.650)
		0.2551 (1.092)		0.2517 (1.073)	0.3019 (1.282)	0.3229 (1.349)
		0.0590 (0.605)		0.0356 (0.275)	0.0335 (0.255)	0.0394 (0.295)
			- 0.0488 (- 0.737)	- 0.0193 (- 0.254)	-0.0308 (-0.403)	- 0.0388 (- 0.499)
			-0.0017 (-0.021)	0.0225 (0.220)	0.0142 (0.138)	0.0131 (0.127)
			-0.3227 (-1.129)	-0.3418 (-1.109)	- 0.2651 (- 0.856)	- 0.2979 (- 0.946)
			0.4211 (1.581)	0.3875 (1.330)	0.3855 (1.321)	0.3694 (1.249)

< 11>

	Reg1	Reg2	Reg3	Reg4	Reg5	Reg6
					0.0385 (0.504)	0.0352 (0.437)
					- 0.1247 (- 1.507)	- 0.1191 (- 1.255)
					0.4304 (1.494)	0.4244 (1.454)
					0.0017 (0.016)	- 0.0176 (- 0.136)
						0.0160 (0.192)
						0.0131 (0.178)
						- 0.0502 (- 0.403)
						0.0571 (0.505)
\mathbb{R}^2	0.324	0.325	0.325	0.325	0.328	0.319
OBS	277	277	277	277	277	277

:() t.

가 . 가 . , , Mincer 가 , 가

. , 가

.

가 () 가 .

가

가 . 가 가 . 가 (

- · (1994), , , 1994
- Behrman, J., and B. Wolfe, (1984), "The socioeconomic impact of schooling in a developing country," *Review of Economics and Statistics*, vol. 66.
- Benham, L(1974), "Benefits of women's education within marriage," in T.W. Schultz, ed. *Economics of the family*, Chicago, IL: University of Chicago Press.
- Griliches, Z. (1977), "Estimating the returns to schooling: some econometric problems," *Econometrica*. vol. 45.
- Heckman, J. J., and V. J. Hotz, (1986), "An investigation of the labor market earnings of Panamanian males: evaluating the sources of inequality," *Journal of Human Resources*, vol. 23.
- Lam, D., and R. F. Schoeni,(1993), "Effects of family background on earnings and returns to schooling: evidence from Brazil," *Journal of Political Economics*, vol. 101, no4.
- _____ (1994), "Family ties and labor markets in the United States and Brazil," *Journal of Human Resources*, vol. 29.
- Leibowitz, A. (1974), "Home investment in children," in T.W. Schultz, ed. *Economics of the family*, Chicago, IL: University of Chicago Press
- Liu, J.T, J. K.Hammitt, and C. J. Lin, (2000), "Family background and returns to schooling in Taiwan," *Economics of Education Review*, vol. 19.
- Murname, R.J. and R. A. Maynard, and J. C. Ohls, (1981), "Home resources and children's achievement," *Review of Economics and Statistics*, vol. 63.
- Ozdural, S(1993), "Intergenerational mobility: a comparative study between Turkey and the United States," *Economics letters*, vol. 43.
- Schultz, T. W(1988), "Education investment and Returns," in Hollis Chenery and T.N. Srinivasan ed. *Handbook of Development Economics*, vol. 1: North-Holland.
- Welch, F(1974), "Comment on benefits of women's education within marriage," in T.W. Schultz, ed. *Economics of the family*, Chicago, IL: University of Chicago Press.
- Welch, F(1975), "Human capital theory: education, discrimination and life cycles," *American Economic Review*, vol. 65.