:

.

가 . 가 , .

, . 가 가 . 가 가 30

*

I. 가 (Blau and Duncan, 1967; Swell et al., 1969; Lipset and Bendix, 1959; Collins, 1979). (family background) (origin) , (market outcome) (destination) 가 (Hallinan, 1988). 가 가 () 가 가 , 20) 가

가

가

- 2 -

가

가

60-70%

```
(Althusser, 1971; Bourdieu and
                                                                           가
Passeron, 1977).
(Collins, 1979; Pallas, 1995).
                     (Bourdieu and Passeron, 1977)
                                                               (cultural capital)'
                                         가
                                                                       가
                                           가
                     (Bowles and Gintis, 1976)
                                 (contested terrain)
                                 (correspondence)
   20
                              가
                                                           (Thurow, 1972) '
                                                                  가
(defensive expenditure)'
           가
                                                          (strategy of differentiation)'
                                      가
    가
  (Hout, Raftery and Bell, 1990; Raftery and Hout, 1990)1).
                                                                (credential society)'
    가
                                                                                         (lately
developed economy)
                                             (employment sector)
              가
1)
                                     MMI(Maximally Maintained Inequality)
                                                                                        (Raftery
and Hout, 1990).
```

- 3 -

```
(Hoselitz, 1965).
                                                                                           가
                                                                         가
                                           (Turner)
                                                        가
      2).
                                                      가
                                                      가
                                     가
                                                                     (rent seeking)가
                                  가
                                    , 1988;
                                                                         , 2000).
                                                           , 1999;
                              가
                                 가
                                                                       , 1999). 가
              가
                                                                              (
                                                                                     , 2000).
가
                          90%
60%
                                         , 1990)
    가
                                                                            (Sewell and Shah,
                                                                             가
1967),
2)
       (Turner, 1960)
                                              (educational selection)
                                                                              가
        (social mobility)
                                                                 (sponsored mobility)
                        (contest mobility)
          (aristocratic)
                              가
                                                                  가
                                      (meritocratic)
```

(political demand)

- 4 -

가 100% (質) (糧) 가 가 (Collins, 1979) (credential society)' 가 가 가 (Alexander, Pallas and Holupka, 1987; Hout, 1980). 가 가 가 가 (, 가)가 (Mare, 1981; Hout, Raftery and Bell, 1990). 가 가 (Boudon, 1973; Kelley, 1988; , 2001). 6 가

- 5 -

(

)

•

1.

가.

(age cohort) 가 가 30

(school transition)

3,174 (

1,993

1,102

1,102

221

406

607

: 3 (2000).

1) (Y_I) (, (1) ' ', (2) ' (odds ratio) . , (3) ' 가 가 (2000 99.5% , 1998). • 가 가 (Y_2) () 1997

3 . '가

```
가
                                                                                 가
                                                 (occupational status)
     (Ganzeboom, De Graaf and Treiman, 1989)
                                                                           (socio-economic
                                                          가
                                                                          97-98
                                                                                  가
index)
                 . 가
                                         1
                                        4
                                                                                  50% (2, 3
                                                                 25% (4
                                                                          ),
                                                               . 가
  ),
                                      (proxy)
            25%(1)
                                                                                    (social
         가
                가
capital)
          .3)
                           (school background)'
                                                                        가
                (institutional constraints)
                                                    가
                                                                                    (social
milieux)
                                                                            (Fischer, at al.
1996).
                                              (age cohort)
                                    (1) 21 , (2) 22-26 , (3) 27
(cohort)
                    . 26
                                26
                                            27
                                                                                        21
           (
                                                                , 26
                                                                        가
                                                               가
                                        가
                                                      , 1998)4).
3) 가
                      3
                                                                          가
                가
                                           (=1),
                                                                       (=0)
                       (KLIPS) 3
4) "가
                                                                                  가
                                                                               가
    가
                                     가
                                                                , 가
```

- 8 -

, 1998: 63)."

(

< 1>

	KLIPS 3	1, 0. 45.3%(1,122), 54.7%(1,354)
	KLIPS 3	(reference group) 27 () . 21 38.2%(945), 22 26 33.8%(837) 27 28.0%(694)
1)	KLIPS 1 KLIPS 2-3	(reference group) . 52.8%(1,271), 33.9%(816) 13.3%(320)
	KLIPS 1 KLIPS 2-3	() () = 36.01(12.91)
가	KLIPS 1 가	(reference group) (4 1) . 22.1%(548), 45.2%(1,118), 25.0%(548)
	KLIPS 3 ·	²⁾ 1, 0. 19.5%(483) , 80.5%(1,993)
	KLIPS 3	1, 0. 64.0%(1,544). 36.0%(867)
	KLIPS 3	1, 0. () 59.1%(1,424), 40.9%(986)
	KLIPS 3	(reference group) . 42.0%(1,040), 19.4%(480), 38.6%(956)
	KLIPS 3	· ('97) (proxy)
, , ,	, , ,	, , , , .
1>	2,476 .	(

2.

가. (multinomial logit model)

```
(
                                                                                                /
                                                                                                               )
                                                                                                              가
                                                       가
     (multinomial logit model)
                                                                                   (OLS: ordinal least square
                                     가
regression analysis)
                                                                                 (BLUE: best linear unbiased
estimates)
        (cumulative distribution function)
                                     (Maddala, 1983; Agresti, 1990).
                                                            가
                                                                                                     (discrete set
of destinations)
                                                                         (odds ratio)
                                                                   . 3
                                         (baseline-category)
                                                                            Agresti, A.
                                         (
                                                                                              Categorical Data
Analysis, 9
  L_j = \log\left(\frac{\pi_j}{\pi_J}\right), \qquad j=1, \dots, J-1
                                                                                                j
     (log odds)
                                                         3
    \log(\pi_1/\pi_3) - \log(\pi_2/\pi_3)
   \log \left(\frac{\pi_{j}}{\pi_{J}}\right) = \alpha_{j} + \beta_{j} x \qquad j=1, \dots, J-1
                           J - 1
                                                                                                        가
                                                      (parameter)
                                                                         ß
                                                                                         (regression parameter)
                               Q_{j}
                                                                                  (
                                                                                                            =1,
                       =0)
                                                      (binary logit analysis)
```

(=1, =0) (ordinal logit model) 가 가 가 (Agresti, 1990: 318). (Adjacent Categories Model) $L_{j} = \log \left(\frac{\pi_{j_{+1}}}{\pi_{j}} \right) = \alpha_{j} + \beta x \qquad j=1, ..., J-1$ 가 가 \boldsymbol{x} J-1 x (threshold parameter) qß (regression parameter) . β j j+1, j+1 $j+2, \dots$ (odds-ratio) \boldsymbol{x} 1. 5) (baseline-category) J j

 $L_j^* = \boldsymbol{q}^* + \boldsymbol{\beta} \mathbf{U}_j, \ j=1,...,J-1; \ \mathbf{U}_j=(J-j)\boldsymbol{x}$

< 1>

			(: ; %
	786 (52.6)	708 (47.4)	1,494 (100%)
	778 (70.6)	324 (29.4)	1,102 (100%)
	389 (89.6)	45 (10.4)	434 (100%)
	308 (53.4)	269 (46.6)	577 (100%)
	201 (54.2)	170 (45.8)	371 (100%)
()	434 (58.4)	309 (41.6)	743 (100%)
	430 (77.1)	128 (22.9)	558 (100%)
	379 (79.6)	97 (20.4)	476 (100%)
	396 (56.7)	302 (43.3)	698 (100%)
가	934 (64.5)	514 (35.5)	1,448 (100%)
	506 (75.1)	168 (24.9)	674 (100%)
71	1,538 (61.3)	973 (38.7)	2,511 (100%)
가	468 (77.6)	135 (22.4)	603 (100%)

(,)

가 가 , 100% 가 , ,

.

가

< 2>

, < 1>

, 가 1

'(selection) '(screening)7

. 가 . 가

가 .

	< 2>	(=1)				
		I	II	III	-	
	(=1)	.207(.086)**	.205(.090)**	.232(.091)**	_	
	Cohort (1)	.212(.113)*	087(.120)	075(.121)		
	Cohort (2)	.128(.129)	.026(.135)	.037(.135)		
	7 }					
			.543(.102)***	.466(.104)***		
			1.642(.212)***	1.488(.296)***		
	()		.028(.005)***	.026(.005)***		
	가 3)					
				.227(.108)**		
				.261(.138)**		
	가			.646(.136)***		
		.375(.106)***	785(.182)***	986(.193)***	_	
	N	2,412	2,412	2,412		
	-2 Log Likelihood	3111.645	2869.344	2839.098	_	
	Pseudo-R ² (Cox & Snell)	.004	.099	.110		
	: 1) (re	ference group)	(27) .	-	
		reference group)				
	3) 가	(reference group) , 4	1 .		
	4) 가	(S. E.) .				
	5) * P < .1 ** P < .05					
	, ()	가 , 가			
	가					
,		가			가	
,					•	4.5
(=exp(1.48	(8)),	2.7 (=exp(1.0	(3))			_
	가 10	` ! `	<i>?</i>	exp(0.26)=1.3		
	. 가		- 1	가	가	
	. 71			/ 1	7 [

2 (=exp(0.646))

가 가

 $1.27(=\exp(.227))$ $1.30(=\exp(.261))$

```
(i.e., Saxton,
1961; Schafer, 1971; Rosenbaum, 1980;
                                             , 1986;
                                                                        , 1998).
                                                          , 1994;
            가
    (
           , 1986;
                        , 1994).
                                             가
                                                                                  가
                                                        (dual high school system)
      가
(Rosenbaum, 1979)
                                                                   가
     가
                        (league)
                                                                         (tournament mobility)
                                                =
       가
                           6).
  2.
      3>
                가
                                   ( )
                                                           , 가
             가
        4>
                                                                         )
                                                                                     )
                                  (
                                                 )
                                                                 (binary)
                                                      (odds-ratio)
                                                                      가
                                                  (multinomial)
6)
                                                 (career mobility)
                       가
                                          (round-robin)
                             가
                                                                             , 1997: 120).
                                                                                   가
                   (school transition)
           (
                                         )
```

< 3> , (·) (: ; %)

		695 (54.7)	232 (18.3)	344 (27.1)	1,271 (100%)
		253 (31.0)	196 (24.0)	367 (45.0)	816 (100%)
		54 (16.9)	45 (14.1)	221 (69.1)	320 (100%)
		307 (57.8)	95 (17.9)	129 (24.3)	531 (100%)
	•	147 (53.6)	49 (17.9)	78 (28.5)	274 (100%)
()		235 (42.8)	119 (21.7)	195 (35.5)	549 (100%)
		123 (28.5)	97 (22.5)	212 (49.1)	432 (100%)
		95 (10.5)	59 (16.0)	214 (58.2)	368 (100%)
		271 (49.5)	102 (18.6)	175 (31.9)	548 (100%)
가		471 (42.1)	227 (20.3)	420 (37.6)	1,118 (100%)
		155 (29.5)	96 (18.3)	275 (52.3)	526 (100%)
가		913 (45.8)	387 (19.4)	693 (34.8)	1.993 (100%)
		127 (26.3)	93 (19.3)	263 (54.5)	483 (100%)

(1)

가 , 가 ,

. ,

1.7 (=exp(.559)), 2.1 (=exp(.728)) , フト 10 1.2 (=exp(.190))

. 20% , 가

80% 2(=exp(.639))

. (age cohort)

가 가 ,

< 4>

(2)

< 4>	>			
				_
	/	/	/	/
(=1)	.307(.137)***	.214(.137)	.387(.128)***	172(.140)
Cohort (1)	.775(.141)***	.497(.175)***	.990(.164)***	.493(.185)***
Cohort (2)	.773(.141) .581(.143)***	512(.174)***	.636(.167)***	.123(.187)
가	201(1110)	512(.171)	1000(1107)	
2)				
	.559(.129)***	.478(.157)***	.645(.147)***	.167(.159)
	.728(.237)***	015(.316)	1.016(.254)***	1.031(.282)***
()	.019(.006)****	.017(.007)**	.019(.007)***	.002(.007)
가 3)			400 (450)	
	.185(.131)	.186(.161)	.183(.152)	030(.171)
가	.295(.165)* .639(.161)***	.229(.202) .459(.195)**	.740(.175)***	.116(.207) .281(.175)
7 1	.039(.101)	.439(.193)	./40(.1/3)	.261(.173)
(=1)	1.550(.115)***	.782(.139)***	2.247(.151)***	1.464(.169)***
(=1)	.063(.114)	095(.137)	.184(.130)	.279(.141)**
	-2.448(.399)***	-2.562(.302)***	- 3.803(.288)***	- 1.336(.288)***
N	1,798		1,798	,
-2 Log Likelihood	1967.731		2598.172	
Pseudo-R ² (Cox & Snell)	.226		.291	
: 1)	(reference group)	(27) .	
2)	(reference grou			
3) 가	(reference	e group) ,	4 1	
4) 가	(S. E.)			
5) * P < .1 ** P <	.05 *** P< .01			
(-)			
		가		
				가
			,	
가			가	가
가	(2	가)	(,)
			(,	, 1992; , 199

. , 2001). 가 exp(1.016)=2.8 $\exp(.645)=1.9$ 가 가 10 () exp(.190)=1.2 가 2 (27) (21)가 (exp(.990)) 1.2 (exp(493)) 10% 가 1.5 가 가 9 가 가 가 4 가 가 < 5> 가 가 가 가 가 가 , 가

< 5>

	/	/	/	/	
(=1)	.367(.181)**	250(.310)	.243(.146)*	391(.169)**	
Cohort (1)	.838(.234)***	377(.426)	.755(.179)***	.652(.219)***	
Cohort (2)	.435(.244) [*]	061(.463)	.683(.181)***	.200(.216)	
가					
2)					
	.446(.205)**	.151(.337)	.646(.168)***	.182(.187)	
	593(.565)	.806(1.030)	1.030(.293)***	.976(313)***	
()	.009(.010)	.004(.018)	.023(.007)***	.001(.008)	
가 3)					
	.500(.214)**	418(.382)	031(.173)	.161(.201)	
	.793(.260)***	354(.202)	084(.701)	.202(.245)	
가	.668(.272)**	114(.432)	.612(.201)***	.405(.204)**	
(=1)	.058(.180)	.103(.316)	.058(.148)	.426(.167)**	
	-2.325(.402)***	748(.714)	923(.290)**	251(.353)	
N	639	639	1,159	1.159	
-2 Log Likelihood	754.580	262.032	1193.611	924.281	
Pseudo-R ² (Cox & Snell)	.076	.043	.106	.061	
: 1)	(reference group	p)	(27) .		
2)	(reference grou	ıp)			
3) 가	(reference	ce group)	4 1		
4) 가	(S. E.) .				
5) * P < .1 ** P <	c .05 *** P< .01				
•					

가 가

,

가 15 (=exp(367)) 가 15 (=exp(391))

- 18 -

```
( 21 )가
                (27)
                      가
                        가
                                         가
  , 가
                                    가
        가
                     , 가
                 가
 가
                                      가
                 가
                                가 30
                          가
                                          가
IV.
    ( ) (1997
                                      ( )
                 )
           < 6>
                  가
( )
           . ( )
                                     가
( )
                        , 가
  · , 가 (4 )
                                           가
< 7> ( )
                                   ( )
```

<	6>		(.)	
				(: ; (%))
		233 (51.2)	152 (33.4)	70 (15.4)	455 (100%)
		192 (43.2)	141 (31.8)	111 (25.0)	444 (100%)
		44 (20.4)	75 (34.7)	97 (44.9)	216 (100%)
		95 (55.2)	52 (30.2)	25 (14.5)	172 (100%)
		50 (48.1)	32 (30.8)	22 (21.2)	104 (100%)
()	•	117 (47.2)	80 (32.3)	51 (20.6)	248 (100%)
		97 (38.3)	85 (33.6)	71 (28.1)	253 (100%)
		58 (27.5)	75 (35.5)	78 (37.0)	211 (100%)
		101 (47.2)	65 (30.4)	48 (22.4)	214 (100%)
가		224 (43.0)	175 (33.6)	122 (23.4)	521 (100%)
		95 (33.0)	92 (31.9)	101 (35.1)	288 (100%)
가		385 (44.9)	278 (32.4)	195 (22.7)	858 (100%)
71		91 (32.5)	96 (34.3)	93 (33.2)	280 (100%)
	,		()		,
		,	()	
	,		(,)
				•	
	, 가			,	
			G -	\rightarrow j+1)	8
$(=\exp(2.15))$,				1.5
$(=\exp(0.43))$					
가		13:1			
·					
		/			
			(quantity)		
	(quality)			(-)
()				

(1988)

< 7>

	I	II	III		
(=1) 3)	.206(.131)	.276(.135)**	.264(.186)*	- 521(469)	.343(.150)**
Cohort (1)	.243(.174)	.201(.179)	.288(.186)	- 550(585)	.381(.197)*
Cohort (2)	.111(.174)	.145(.179)	.160(.185)	279(.595)	.222(.195)
가					
		.401(.156)**	.255(.163)*	- 310(539)	.348(.174)**
		1.282(.239)***	.936(.246)***	.724(1.509)	1.003(.254)***
() 가 ²⁾		.012(.006)*	.006(.007)	.001(.027)	.006(.007)
		.019(.170)	.079(.177)	670(.560)	172(.187)
		.136(.199)	.230(.209)	.415(.586)	.227(.222)
(=1)		.174(.171)	.005(.171)	.005(.171)	.005(.171)
			2.149(.234)***	-	-
			.430(.144)***	.430(.144)***	.472(.153)***
Threshold 1	108(.165)**	.861(.292)***	2.624(.370)***	.954(1.038)	703(.331)**
Threshold 2	1.283(.171)***	2.386(343)***	4.289(.386)***	2.628(1.094)**	2.383(.343)***
N	844	844	844	156	688
-2 Log Likelihood	1624.526	159.537	1259.719	152.211	1102.980
Pseudo-R ² (Cox & Snell)	.005	.046	.223	.046	.096

```
: 1)
                       (reference group)
 2)
                      (reference group)
                                                     (27
                                                            ) .
 3) 가
                          (S. E.) .
 4) ^{*} P < .1 ^{**} P < .05 ^{***} P< .01
                     (
                                        )
                                                                                  (50.5%)
                      , 1999
                                      38.2%
                     , 1999: 45)
                                          가
```

, 가 . 가

•

,

가 가? 가 < 7> , 가 가 가 , 가) $2.7 \quad (=\exp(1.0))$ 1.4 $(=\exp(0.35))$ 가 가 (Raftery and Hout, 1990) (strategy of differentiation) 가 1990 가

- 22 -

가

, 가 , 가 가 가 가 가 (Jencks, et al., 1972) (I.Q) 가 가 가 (statistical artifact) 가 가 가 가 가 가 가 가 1990 가 30 가 가 (equality of opportunity)" 가 3-40

, 2001)

(e.g.,

()		
(contested terrain)		
(defensive expenditure)		
가 기	ነት .	,
	가	(Sewell and
Shah, 1967; 1971). (Hauser,	1998)가	
(cognitive ability, mental ability)		
		.7)
	(Jensen, 1969, Fischer, at al.	1996)
가		
		가 가
	가	
가		
	(Wisconsin Model)	
	가 () '	(significant others)'
, 가		
(role model)		
		가
(Sewell and Hauser, 1972, 1975; S	well, Haller and Portes, 1968; Swell an	nd Hauser, 1980).
•		

⁷⁾ Herrnstein and Murray(1994) The Bell Curve: Intelligence and Class Structure in American Life .

```
<
          , 1990. ₽
          . 1999.
                                                                                               a 37(1):
 155-172.
. 1988.
                                                   Δ.
          . 2001. "
                                                                                                      Д
 35(3): 1-30.
. 1998. "
                                                                               8(1): 19-40.
. 1994. "
                                                       1: 31-75.
. 1986. "
                                                                                               8
                                               " <sub>•</sub>
. 1998. "가
                                                                a 32(
                                                                          ): 63-97.
. 1996. "
-. 2000. "
                                : 가
                                                                                                』 34(가
      ): 671-708.
. 1997.
                    . 1999.
                                                                             (I)_{\mathbb{Z}} .
```

Agresti, A. 1990. Categorical Data Analysis. New York: Wiley.

. 1988. "

. 1992. "

Alexander, K. L., A. M. Pallas and S. Holupka, 1987, "Consistency and Change in Educational Stratification: Recent Trends Regarding Social Background and College Access" in *Research in Social Stratfication and Mobility*, vol. 6:161-185.

C

Althusser, L. 1971. "Ideology and Ideological State Apparatuses", *Lenin and Philosophy and other Essays*, New York: Monthly Review Press.

Behrman, J. and Paul Taubman. 1976. "Intergenerational Transmission of Income and Wealth." American Economic Review 66: 436-440.

Blau, P. M. and O. D. Duncan, 1967. *The American Occupational Structure*. New York: John Wiley and Sons.

Boudon, R. 1973. Education, Opportunity, and Social Mobility: Changing Prospects in Western

- Societies. New York: Wiley.
- Bourdieu, P. and Jean-Claude Passeron. 1977. *Reproduction in Education, Society and Culture*, Beverly Hills, Calif.: Sage Publication.
- Bowles, S. and H. Gintis. 1976. Schooling in Capitalist America, New York: Basic.
- Brown, P. 1991. "Schooling and Employment in the United Kingdom." Ashton, D. and Lowe, G., *Making Their Way: Education, Training, and the labour Market in Canada and Britain*, 85-108. Toronto: University of Toronto Press.
- Collins, R. 1979. The Credential Society: Historical Sociology of Education & Stratification. New York.
- Fischer, C. S., Hout, M., Jankowski, M. S., Lucas, S. R., Swidler, A., and Voss, K. 1996.

 Inequality by Design: Cracking the Bell Curve Myth. Princeton University Press.
- Ganzeboom, Harry B. G., De Graaf, P. M. and Treiman, Donald J., 1989. "A Standard International Socioeconomic Index of Occupations." Revised version of a paper presented at the Annual Meetings of the American Sociological Association, San Francisco.
- Griliches, Z. 1979. "Sibling Models and Data in Economics: Beginnings of a Survey." *Journal of Political Economy* 87: S37-S64.
- Hallinan, M. T., 1988, "Equality of Educational Opportunity," *Annual Review of Sociology* 14:249-268.
- Hauser, R. M. 1998. *Mental Ability and the Sources of Occupational Success*. CDE Working Papers, no. 98-07. Madison, Wisconsin: Center for Demography and Ecology, The University of Wisconsin-Madison.
- Herrnstein, R. J. and C. Murray, 1994. The Bell Curve: Intelligence and Class Structure in American Life. New York: The Free Press.
- Hoselitz, Bert F., 1965, "Investment in Education and Its Political Impact," Pp. 541-565 in James S. Coleman (ed.), *Education and Political Development*. Princeton: Princeton University Press.
- Hout, M., 1988, "More Universalism, Less Structural Mobility: The American Occupational Structure in the 1980s," in *American Journal of Sociology* vol. 93(no. 6):1358-1400.
- Hout, M, A. E. Raftery and E. O. Bell, 1990, "Making the Grade: Educational Stratification in the United States, 1925-1989," Paper presented for the Sociological Association World Congress in Madrid.
- Jencks, Christopher, et al. 1972. Inequality: A Reassessment of the Effect of Family and Schooling in America. New York: Basic Books.
- Jensen, A. R. 1969. "How Much Can We Boost IQ and Scholastic Achievement?" *Harvard Educational Review* 39: 1-123.

- Kelley, J. 1988. "Wealth and Family Background in the Occupational Career: Theory and Cross Cultural Data." *British Journal of Sociology* 29: 94-109.
- Kuo, Hsiang-Hui Daphne and Houser, R. M, 1995. "Trends in Family Effects on the Education of Black and White Brothers." *Sociology of Education* 68(2): 136-160.
- Lipset, S. M. and Bendix, R. 1959. Social Mobility in Industrial Society. London.
- Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Econometrics. New York: Cambridge University Press.
- Mare, R. 1981. "Change and Stability in Education Stratification." *American Sociological Review* 46: 72-87.
- ——. 1981, "Market and Institutional Sources of Educational Growth," in *Research in Social Stratification and Mobility*, vol. 1:205-245.
- Pallas, A. M. 1995. "Schooling, Achievement, and Mobility." Pp. 11-33 in *Transforming Schools* edited by Cookson, Jr. P. W. and B. Schneider, New York: Garland.
- Raftery, A.E. and M. Hout., 1990. "Maximally Maintained Inequality: Expansion, Reform, and Opportunity in Irish Education, 1921-1975." Paper presented at the ISA Meetings, Madrid.
- Rosenbaum, J. 1979. "Tournament Mobility: Career Patterns in a Corporation." *Administrative Science Quarterly* 24: 220-241.
- Rosenbaum, J. 1980. "Track Misperceptions and Frustrated College Plans: An Analysis of the Effects of Tracks Perceptions in the National Logitudinal Survey." *Sociology of Education* 53: 51-71.
- Saxton, P. 1961. Education and Income. New York: Viking.
- Schafer, W., and Olexa, C. 1971. Tracking and Opportunity. Scranton: Chandler.
- Sewell, William H., Archibald O. Haller, and Alejandro Portes. 1969. "The Educational and Early Occupational Attainment Process." *American Sociological Review* 34:82-92.
- Sewell, William H. and Vimal P. Shah. 1967. "Socioeconomic Status, Intelligence, and the Attainment of Higher Education." *Sociology of Education* 40: 1-23.
- Sewell, William H. and Robert M. Hauser. 1975. Education, Occupation, and Earnings: A chievement in the Early Career. New York: Academic Press.
- Sewell, William H., Robert M. Hauser, and Wendy C. Wolf. 1980. "Sex, Schooling and Occupational Status." *American Journal of Sociology* 86:551-83.
- Thurow, L. C. 1972. "Education and Economic Inequality." The Public Interest, 28: 66-81.
- Turner, R. 1960. "Sponsored and Contest Mobility and the School System." *American Sociological Review* 25: 855-867.