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(i) Often T = 2 or 3 used; N large T small; i for individuals often omitted.

(ii) Mostly ‘fixed effect’ (‘related effect’) models; rarely ‘random effect’.

(iii) Based mostly on Lee (2002) and the literature since 2002; other overviews in Arellano

and Honoré (2001), Arellano (2003), and Hsiao (2003),
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0.1.1 1. Linear Models

1.1 Getting T×1 Vector yi = q0iη+vi Suppose, for i = 1, ..., N and t = 1, 2, 3 (= T ),

yit = 1· τ t
1×1

+ c̃0i
1×kc̃

α̃ + x0it
1×kx

β + δi+uit ((1.1))

where τ t, α̃ and β are parameters, c̃i is time-constant regressors, xit is time-variant regressors,

and δi + uit is an error term.

An example is

yit : ln(wage)

τ t : effect of economy on yit common to all i

c̃i : race, schooling years

xit : work hours, local unemployment rate

δi : ability, IQ, or productivity

uit : unobserved residential information

Define

k̃ ≡ kc̃+kx, γ̃ ≡

⎡⎣ α̃

β

⎤⎦ , w̃it≡

⎡⎣ c̃i

xit

⎤⎦ , vit≡ δi+uit,

to rewrite the model as

yit = 1· τ t
1×1

+w̃0it
1×k̃

γ̃ + vit. ((1.2))

Define

ci≡ (1, c̃0i)0, α ≡ (τ1, α̃), wit≡ (ci, x0it)
0
, γ ≡ (α0, β0)0, k ≡ kc+kx.

If τ1 = τ2 = τ3, then

yit = w0it
1×k

γ +vit, ((1.3))

to be used sometimes to simplify exposition.
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Assume only iid of (w0it, vit) across i while allowing for arbitrary dependence and hetero-

geneity across t within a given i. (1.2) allows endogenous regressors and lagged dependent

variables as regressors.

Define

yi≡

⎡⎢⎢⎢⎣
yi1

yi2

yiT

⎤⎥⎥⎥⎦ , x0i≡

⎡⎢⎢⎢⎣
x0i1

x0i2

x0i3

⎤⎥⎥⎥⎦ , ui≡

⎡⎢⎢⎢⎣
ui1

ui2

ui3

⎤⎥⎥⎥⎦ .

Write the stacked time-effects as⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

τ1

τ2

τ3

⎤⎥⎥⎥⎦ ≡ I3τ = τ .

Define

m3≡

⎡⎢⎢⎢⎣
0 0

1 0

0 1

⎤⎥⎥⎥⎦ , ∆τ ≡
⎡⎣ τ2−τ1

τ3−τ1

⎤⎦ , τ∗≡

⎡⎣ ∆τ
τ1

⎤⎦
to get

I3τ = (m3, 13) · τ
∗ :

⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

τ1

τ2

τ3

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
0 0 1

1 0 1

0 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

τ2−τ1
τ3−τ1
τ1

⎤⎥⎥⎥⎦

The 13 column is the analog for the usual intercept in cross-section models; it becomes a

time-constant regressor.

Observe

103⊗ci = [1, 1, 1]⊗ ci = [ci, ..., ci]
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and finally write (1.2) as

yi
3×1

= m3
3×2
∆τ + (103 ⊗ ci

3×kc
)0α + x0i

3×kx
β + 13

3×1
δi + ui

3×1

= m3
3×2
∆τ + w0i

3×k
γ + vi = q0i

3×(k+2)
η + vi ((1.4))

where

w0i ≡ (wi1, wi2, wi3)
0 = ((103 ⊗ ci)

0, x
0
i),

q0i ≡ (m3, w
0
i), η ≡ (∆τ 0, γ0)0, vi≡ 13δi+ui.
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1.2 Moments, IVE and GMM Four types of orthogonalities between regressors and

error terms:

summing (SUM): E(
P

t xtvt) = 0

contemp. (CON): E(xtvt) = 0 ∀t

predeter. (PRE): E(xsvt) = 0 ∀s ≤ t

strictly exo. (EXO): E(xsvt) = 0 ∀s, t

The following holds:

SUM⇐ CON⇐ PRE⇐ EXO.

SUM is the moments for the LSE treating the panel as NT cross-section observations, for

the LSE moment condition is

N−1ΣiΣtxitvit= 0 =⇒ E(Σtxtvt) = 0.

This LSE is similar to the ‘between group estimator (BET)’ which is the LSE applied to

ȳi ≡ T−1
P

t yit and x̄i ≡ T−1
P

t xit.

In CON, only contemporaneous correlations are zero. In PRE, xt can be correlated with

vs if t > s; e.g., rational expectation models with

E(vt|x1, ..., xt) = 0, not with E(vt|x1, ......, xT ) = 0.

In EXO, xs and vt are uncorrelated ∀s, t.

Moment conditions other than the above may be used as well. For example,

E(xsvt) = 0 ∀s < t (not s ≤ t as in PRE)

allowing a contemp. relation for xt and vt.

For IVE under PRE, observe
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t = 1 : E(v1w1) = 0,

t = 2 : E(v2w1) = 0, E(v2w2) = 0,

t = 3 : E(v3w1) = 0, E(v3w2) = 0, E(v3w3) = 0.

Remove redundant moments due to ci appearing in all wit’s to get

t = 1 : E(v1w1) = 0,

t = 2 : E(v2x1) = 0, E(v2w2) = 0,

t = 3 : E(v3x1) = 0, E(v3x2) = 0, E(v3w3) = 0.

For IVE, set up the instrument matrix

z =diag{w1, (x
0
1, w

0
2)
0, (x01, x

0
2, w

0
3)
0}

to observe

z · v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 0 0

0 x1 0

0 w2 0

0 0 x1

0 0 x2

0 0 w3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[{kx·(1+2+3)}+kc·3]×3

⎡⎢⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎥⎦
3×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1v1

x1v2

w2v2

x1v3

x2v3

w3v3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With zi, the IVE for η is

hive = {
X
i

qiz
0
i (
X
i

ziz
0
i)
−1 X

i

ziq
0
i}−1

·
X
i

qiz
0
i (
X
i

ziz
0
i)
−1 X

i

ziyi.

The GMM more efficient than the IVE is
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hgmm = (
X
i

qiz
0
i C

−1
N

X
i

ziq
0
i)
−1

·
X
i

qiz
0
i C

−1
N

X
i

ziyi;

CN ≡ (1/N)
P

i ziv̂iv̂
0
iz
0
i, v̂i ≡ yi − q0ihive, and

√
N(hgmm−η) ∼ N(0, {(

X
i

qiz
0
i/N) C

−1
N (

X
i

qiz
0
i/N)}−1).

Also, with ṽi ≡ yi − q0ihgmm,

{(1/
√
N)
X
i

ziṽi}0{(1/N)
X
i

ziṽiṽ
0
iz
0
i}−1(1/

√
N)
X
i

ziṽi

is the GMM over-identification test statistic for Ho : E(zv) = 0.

8



1.3 Handling Individual Effect δi When δ is related to some components w1t in

wt = (w
o0
t , w

10
t )
0, one solution is using wo

s as instruments for w
1
t . Three other solutions are:

1. Error Differencing : use wt as instruments for vt − vt−1 free of δ.

2. Regressor Differencing : use w1t − w1t−1 as instruments for vt if w
1
t = δ + ωt with ωt

unrelated to δ.

3. δ-Splitting : absorb the part of δ related to w1t into w
0
tγ, leaving in vt only the part of δ

unrelated to w1t .

1.3.1 Error Differencing/Transforming When T = 2,

yt−yt−1= τ t−τ t−1 +(xt−xt−1)
0β + ut−ut−1

is free of δ; LSE or IVE can be applied. For a generic T , apply mean differencing:

vit−
PT

t=1 vit
T

= uit−
PT

t=1 uit
T

.

Multiply the ‘mean-differencing matrix’

QT≡ IT −
1T1

0
T

T

to the yi equation to get

QT yi = QTmT∆τ +QTx
0
iβ +QTui ≡ QTw

∗
i
0γ +QTui,

w∗0i
T×(T−1+kx)

≡ (mT , x
0
i), γ∗ ≡ (∆τ 0, β0)0;

e.g.,

QT yi= (yi1−ȳi, ..., yiT−ȳi)
0.

The ‘within group estimator (WIT)’ is

gwit = (
X
i

w∗iQTw
∗0
i )
−1·
X
i

w∗iQT yi.
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As a digression, suppose

yit = w̄0iγ1
permanent

+(wit − w̄i)
0γ2

transitory part
+δi+uit

=⇒ ȳi = w̄0iγ1 + δi+ūi (for BET)

=⇒ yit−ȳi = (wit−w̄it)
0γ2 + uit − ūi. (for WIT)

If γ1 = γ2 = γ, we get yit = w0itγ + δi + uit.

Another digression is that, sometimes when N is small relative to T , dummy variables

are used for all i:

yj = x̃0jβ̃ + Σ
N
i=1δidij + uj , j = 1, ..., NT

dij = 1 if datum j is for person i and 0 otherwise.

Let ŷj (x̂j) denote the LSE residual of yj (x̃j) on d1j , ..., dNj . β̃ can be estimated by the LSE

of ŷj on x̂j , which is WIT. This can be seen in the LSE of Y (NT × 1) on IN ⊗ 1T :

{(IN⊗1T )
0(IN⊗1T )}

−1(IN⊗1T )
0Y

= (IN⊗10T1T )
−1(IN⊗10T )Y

= (IN⊗T−1)(Σ
T
t=1y1t, ...,Σ

T
t=1yNt)

0= (ȳ1, ...ȳN )
0.
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Ln(wage) Equation

BET WIT GMM-PRE GMM-EXO

τ2−τ1 -.004(.15) .00(.47)

τ3−τ1 .002(.04) .001(.04) .004(.17)

τ1 .413(.58) 1.377(1.2) .412(.45)

age .043(1.3) .079(1.4) .062(1.1) .076(1.5)

age2

100 -.033(-.9) -.081(-1.3) -.053(-.7) -.076(-1.1)

edu .064(5.2) .010(.24) .064(2.0)

#kids .003(.11) .044(.76) .027(.16) -.064(-.41)

ln(hour) .013(.57) -.105(-3.2) .030(.36) -.009(-.15)

married .114(.88) .008(.06) -.634(-.91) -.069(-.15)

salaried .259(3.7) .091(2.0) .271(2.9) .125(2.1)

self-emp. -.454(-4.2) -.200(-1.8) -.291(-2.6) -.278(-3.0)

unem.rate -.012(-.6) -.030(-1.5) -.039(-2.1) -.031(-2.4)

p-value for GMM over-ID test: .288 .035

1.3.2 Regressor Differencing/Transforming Error-differencing removes all time-

constants (e.g., education) along with δ. In regressor differencing, the error term–i.e., the

model equation–stays intact and all time-constants are kept. The IVE and GMM are of this

type.

The Linear projection of λ on z is

E(λz0) E−1(zz0) z = B0z, where B ≡ E−1(zz0) E(zλ0);

B is the ‘linear projection coefficient’, and either E(z) = 0 or z should have 1 as its component.

Split λ into two parts B0z and ε ≡ λ−B0z; COR(ε, z) = 0 by construction.

Suppose, for a regressor mt,

E(mt) and E(δmt) are not functions of t,

which is a moment-stationarity assumption. Linearly project mit on (1, δi) to get
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mit= φi+(mit−φi) ≡ φi+λit.

λit is uncorrelated with φi by construction;

mit−mi,t−1= λit−λi,t−1

can be used as an instrument.

1.3.3 δ-Splitting and MDE Chamberlain (1982) rewrites δi as

δi = 1 · ζo +c̃0iζ c̃ +Στx0iτζτ +νi, νi≡ δi−ζo−c̃0iζ c̃−Στx0iτζτ ;

δi is (linearly) projected on (1, c̃0i, x
0
i1, ..., x

0
iT ), and (ζo, ζ

0
c, ζ

0
1, ..., ζ

0
T ) are the (linear) projection

coefficients.

Substitute δi into yit= τ t+c̃
0
iα̃+ x0itβ + δi+uit to get

yit= τ t+ζo+c̃
0
i(α̃+ ζ c̃) + x0it(β + ζt)+Στ 6=tx

0
iτζτ+vit, vit≡ νi+uit;

With δ gone, each wave can be estimated by LSE or IVE.

When each wave is estimated separately, there occurs problems: e.g., T -many estimates

for α̃ + ζ c̃. How do we combine these? This is done by a minimum distance estimator

(MDE), which is a (weighted) average of T -many estimates.

The advantage of δ-splitting is that projection does not require any restriction (no as-

sumption that E(δ|ci, xi1, ..., xiT ) is a linear function of ci, xi1, ..., xiT ). A disadvantage is that

α̃ is not identified due to ζ c̃. This can be avoided omitting c̃i from the variables on which δi

is projected. In this case, the resulting error term may be correlated with c̃i (use IVE then).

Holtz-Eakin et al. (1988,89) project yt on

1, yt−1, ..., yt−J , xt−1, ..., xt−J , δi to get
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yit = α0t +Σ
J
j=1αjtyi,t−j +Σ

J
j=1βjtxi,t−j +Φtδi +uit.

The projection yields PRE type conditions:

E(uit) = 0, E(yisuit) = 0, E(xisuit) = 0, t− J ≤ s ≤ t− 1.

Removing δi with a ‘quasi-differencing’ yit − (Φt/Φt−1)yi,t−1, they estimate the model with

IVE. ‘Granger non-causality’ of xt on yt (βjt = 0 ∀j, t) can be tested.
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0.1.2 2. Limited Dependent Variables

2.1 Conditional Logit and Panel Probit Suppose

y∗it = τ t +c̃
0
iα̃ + x0itβ + δi+uit = τ t +w̃

0
itγ̃ + vit,

yit = 1[y∗it> 0], where

τ t is the time-effect common to all i,

c̃i is time-constant regressors,

xit is time-variant regressors,

w̃it is (c̃0i, x
0
it)
0, the parameter γ̃ is (α̃0, β0)0,

vit ≡ δi + uit is a composite error.

IVE (for ‘regressor differencing’) is not applicable, for the yit eq. is not solvable for

vit; only ‘error-differencing’ and ‘δ-splitting’ can remove the relation between δi and w̃it. In

error-differencing, absorb c̃i into δi, for both will be removed by the differencing.

Conditional logit (CLOG) with T = 2 assumes

uit is logistic independently of (δi, xi1, xi2),

and iid across i and t,

and maximizes, for b (∆xi ≡ (1, x0i2 − x0i1)
0),

X
i

di [yi1 ln
1

1+exp (∆x0ib)
+ yi2 ln

exp (∆x0ib)

1+ exp (∆x0ib)
]

where di = 1 if yi1 6= yi2 and 0 otherwise; the intercept in b is for τ2 − τ1. CLOG is

error-differencing.

For T ≥ 3, apply CLOG to each possible pair, to combine the estimates with MDE. For

ordered discrete responses (ODR), collapse ODR into binary; apply CLOG to each possible

binary version; use MDE. Also multinomial CLOG is available.
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The CLOG dynamics is limited. First, ui1, ..., uiT are iid: vit = δi + uit, t = 1, ..., T, are

related only through δi; auto-correlation of vit is constant over t. Second, uit is independent

of (δi, xi1, ......, xiT ), not just of (δi, xit), or of (δi, xi1, ..., xit); these three are of type EXO,

CON, and PRE.

One disadvantage of the EXO in CLOG is that, constraining uit to be independent of

the future regressors, the future xit cannot be adjusted depending on the past uis. Another

disadvantage is that yi,t−1 is not allowed in xit: if yi,t−1 is in xit, then uit becomes dependent

on xi,t+1.

Panel probit assumes

δi = ζo +c̃
0
iζ c̃ +x

0
i1ζ1+, · · · , +x0iT ζT +εi, εi∼ N(0, σ2ε).

Differently from the linear model, this is an assumption, not projection. Plug this into the

y∗it eq. to get

y∗it = τ t +ζo +c̃
0
i(α+ ζ c̃) + x0it(β + ζt) +Σj 6=tx

0
ijζj +εi+uit.

Divide both sides by σt ≡ SD(εi + uit) and apply the usual probit to each wave. The

remaining steps are similar to those for the linear model projection approach with MDE; an

extra complication is σt varying over t.
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2.2 Conditional Poisson Defining

∆xit1≡ (1, x0it−x0i1)
0,

Conditional poisson (CPOI) of Hausman et al. (1984) for count responses maximizes for b

TX
t=1

yit·[ ∆x0it1b − ln {
TX
s=1

exp (∆x0is1b)} ].

Wooldridge (1999) shows that CPOI needs only

E(yit|δi, xi1, ..., xiT ) = E(yit|δi, xit) = exp (τ t + x0itβ + δi).

The second equality specifies a regression function. The first equality is an EXO, because

given xit and δi, the dist. of yit is that of an ‘error term’ in yit, and knowing xiτ , τ 6= t, is not

informative for the error term. These assumptions are much weaker than the original ones

for CPOI.
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2.3 Censored Model When T = 2, for the censored model

yit=max (y
∗
it, 0),

Honoré’s (1992) assumes that ui1 and ui2 are exchangeable given (δi, xi1, xi2)–an EXO–to

propose an estimator minimizing

ΣNi=1[ {max (yi2,∆x0ib)−max (yi1,−∆x0ib)−∆x
0
ib}

2

−2 · 1[yi2 < ∆x0ib] (yi2−∆x0ib)yi1 −2 · 1[yi1< −∆x0ib] (yi1+∆x0ib)yi2 ].

Private Transfer (Dae-Woo panel; Kang & Lee (2003))

96/97, related 96/97, unrelated

Public transfers -0.998 (-3.33) -0.742 (-4.27)

Pre-transfer income -0.002 (-0.11) -0.013 (-1.67)

# elderly above 60 -0.529 (-0.04) 35.66 (4.89)

Household size -66.52 (-1.80) -26.61 (-4.51)

agriculture/fishery/part-time 91.18 (1.25) 116.58 (6.14)

unemployed/non-paid 101.06 (1.38) 185.04 (8.89)
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2.4 Dynamic Models

2.4.1 Dynamic Panel Probit Lee and Tae (2005) assume

yi1 = 1[w0i1α + αδδi +ui1 > 0], COR(u1, ut) = 0 ∀t = 2, ..., T

yit = 1[βyyi,t−1 +βyzyi,t−1zit +w
0
itβ + δi+uit > 0], t = 2, ..., T

δi = x̄0iµ+ ηi.

The δ equation comes from

δi = x0i1µ1 +, ..., + x0iTµT + ηi

= (Σtx
0
it)µ0 + ηi under µ1=, ...,= µT≡ µ0

= x̄0i(µ0T ) + ηi = x̄0iµ + ηi, where µ ≡ µ0T

Substitute the δ equation to get

yi1 = 1[w0i1α + x̄0iαδµ+ αδηi +ui1 > 0],

yit = 1[βyyi,t−1 +βyzyi,t−1zit +w
0
itβ + x̄0iµ + ηi + uit > 0].

Modelling δi appears in Chamberlain (1984), and modelling yi0 in Heckman (1981).

Assume

ui1 ∼ N(0, σ21), ui2, ..., uiT are iid N(0,σ
2
u), ηi∼ N(0, σ2η),

ui1, ui2, ..., uiT , ηi are independent of one another, and

independent of wi1, ..., wiT .

With Φ(a)y{1− Φ(a)}1−y = Φ{a (2y − 1)}, the log-likelihood function is (ζ ≡ η/ση)
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X
i

ln [

Z
Φ{ (w01

α

σ1
+x̄0i

µαδ
σ1

+ζ
αδση
σ1

) (2yi1−1) }

·
TY
t=2

Φ{ (yi,t−1
βy
σu

+yi,t−1z
0
it

βyz
σu

+w0it
β

σu

+x̄0i
µ

σu
+ζ

ση
σu
) (2yit−1) }φ(ζ)dζ ].

The identified parameters for yi2, ..., yiT :

βy
σu

,
βyz
σu

,
β

σu
,
µ

σu
,
ση
σu
;

ση/σu shows the importance of ηi. It should have been δi = w̄0iµ+ ηi: the coefficients of ci

in wit includes those from w̄i.

Female Work or Not (KLIPS panel; Lee and Tae (2005))

yt−1 0.571 (2.57) ed3 -0.201 (-2.42)

yt−1*married 0.664 (4.18) ed4 -0.624 (-1.60)

yt−1*ed4 0.327 (1.67) ed5 -0.809 (-3.62)

yt−1*age20 -0.538 (-2.31) ed6 1.541 (3.25)

yt−1*age30 -0.547 (-2.09)

age 0.289 (11.1)

age2 -0.335 (-11.5)

ch1 0.030 (0.30) ch1 -1.289 (-6.54)

ch2 -0.002 (-0.03) ch2 -0.286 (-1.68)

ch3 -0.135 (-1.67) ch3 0.318 (2.76)

age20*ed3 0.356 (3.49) age30*ed3 0.187 (1.92)

age20*ed4 1.988 (4.88) age30*ed4 0.342 (0.84)

age20*ed5 2.411 (8.80) age30*ed5 1.425 (5.81)

income -0.025 (-3.75) income -0.204 (-7.37)

job training 0.298 (2.40) job training 2.030 (6.16)

married -1.485 (-4.46) married 0.656 (2.07)

ση/σu 1.395 (15.4)
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2.4.1 Dynamic Count Response ‘Integer-valued AR(1) process’ is

yt = ρ ◦ yt−1 + vt, 0 < ρ < 1,

where ρ ◦ yt−1 is B(yt−1, ρ)–binomial with #trials yt−1 and success probability ρ, and vt is

Poisson with parameter λ independent of ρ ◦ yt−1; vt, t = 1, ..., T , are independent.

Motivated by

E(yt|yt−1) = ρ · yt−1 + λ,

Blundell et al. (2002) specify λ as a function of regressors:

E(yt|δ, Y t−1,W t) = E(yt|δ, yt−1, wt) = ρyt−1+exp (τ t+δ + x0tβ)

where Wt≡ (w1, ..., wt)
0, Y t≡ (y1, ..., yt)

0.

The first equality is a PRE, and the second is specifying a regression function.

To derive moment conditions, define

λt ≡ exp (τ t+δ + x0tβ), et ≡ yt−ρyt−1−λt

=⇒ yt= ρyt−1+λt+et, E(et|δ, Y t−1,W t) = 0.

Also define

st(ρ, γ) ≡ (yt−ρyt−1)
λt−1
λt
− (yt−1−ρyt−2)

= (λt+et)
λt−1
λt
− (λt−1+et−1) = et

λt−1
λt
−et−1

to get the moment condition:

E{st(ρ, γ)|δ, Y t−2,W t−1}

= E{ E(et
λt−1
λt

|δ, Y t−1,W t) |δ, Y t−2,W t−1 }

= E{ λt−1
λt

·E(et|δ, Y t−1,W t) |δ, Y t−2,W t−1 } = 0.

Apply nonlinear GMM. The case with ρ = 0 was proposed by Chamberlain (1992) and

Wooldridge (1997).
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2.4.3 Dynamic Censored Response (not practical yet with convergence problem)

For a dynamic censored response

yit = max (0, γyi,t−1 +x
0
itβ + δi + uit),

suppose γ ≥ 0 and

ut, us are identically distributed given (xt, xs, δ).

Honoré (1993) defines ‘pseudo-residual’

ets(γ, β) ≡ max (0, (xt−xs)0β, yt−γyt−1) −x0tβ

= max (−x0tβ, −x0sβ, yt−γyt−1−x0tβ)

= max (−x0tβ, −x0sβ, δ + ut).

Since ets and est are identically distributed,

0 = E(ets−est|δ, xt, xs)

=⇒ 0 = E[ {max (0, ∆x0tsβ, yt−γyt−1) −∆x
0
tsβ

−max (0, −∆x0tsβ, ys−γys−1)} · (functions of xt,xs) ].

If

ut, us are exchangeable given (xt, xs, δ),

then (ets − est)|(xt, xs, δ) is symmetric around 0, which implies

E{h(ets−est)|δ, xt, xs} = 0 for any h with h(a) = h(−a).

Honoré and Hu (2004) strengthen the assumption to

u1, ..., uT are iid given (x1, ..., xT , δ,y0) ((IID))
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to propose a version identified globally.

Hu (2002) considers

yit = max (0, γy∗i,t−1 + x0itβ + δi + uit);

the latent, not observed, lagged response appears. This is relevant if the censoring is only a

data problem while the economic agent experiences the latent variable; e.g., top-coded income

or censored duration. In this case, use (t− s > 1 under T ≥ 4)

E{ 1[ys−1> 0, ys> 0, yt−1> 0, yt> 0] h(ets−est) |δ, xt, xs } = 0.

The main proposal of Hu (2002) is in fact a version requiring only T = 3 under (IID).
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APPENDIX: How to Get SD or CI For an estimator bN (for β) maximizing

QN(b) =
X
i

q(zi, b),

the asymptotic variance for bN can be estimated by (omit zi)

{
X
i

qibb0(bN)}
−1·
X
i

qibqib0(bN ) · {
X
i

qibb0(bN)}
−1

where qib and qibb0 are the first and second derivatives of q (zi, b) ≡ qi(b).

If qib is k × 1, then its gth component at bN can be obtained numerically with

qi(bN + ε · cg)− qi(bN − ε · cg)
2ε

where ε is a small constant, say 0.00001, and cg is the gth column in Ik. qibb0 can be obtained

applying this process to qib.

Alternatively, use bootstrap percentile method to get confidence intervals (CI). Draw N

pseudo observations randomly with replacement from the original sample to get a pseudo

sample and the pseudo estimate b(1)N . Repeat this, say, 500 times to get b
(1)
N , ..., b

(500)
N . Obtain

the lower and upper 2.5% quantiles which yield a 95% CI.

Define zα/2 as the (α/2)th quantile of N(0, 1); i.e., α/2 = Φ(zα/2). Denoting the empir-

ical dist. function of the pseudo estimates as K and the N(0, 1) dist. function as Φ, the CI

is

[K−1(α/2), K−1(1−α
2
)] = [K−1{Φ(zα/2)}, K−1{Φ(z1−α/2)}].

A ‘biased-corrected (BC)’ CI is

K−1{Φ{zα/2+2Φ−1(K(bN ))}}, K−1{Φ{z1−α/2+2Φ−1(K(bN))}}.

If bN is the median in the pseudo estimates, then K(bN ) = 0.5 and Φ−1(K(bN)) = 0; no BC.

If bN < median, then K(bN) < 0.5, and

Φ−1(K(bN )) < 0 =⇒ BC CI shifts left.
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