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We analyze dynamic labor participation behavior of Korean women for 1998-2001. State

dependence under unobserved heterogeneity is considered, and we allow for the unobserved

heterogeneity to be unrelated, pseudo-related, or related arbitrarily to regressors, which is

done by dynamic probits and a recently developed dynamic conditional logit. In terms of

methodological contribution, a simple three-stage algorithm is proposed for dynamic probits,

which reduces the computation time about by half; it is also shown that the often-used

practice of treating the initial response as fixed should not be used. The following main

empirical conclusions emerged. First, the state dependence is about 0.6×SD(error), higher
for married or junior-college-educated, and lower for women in 20’s and 30’s; state dependence

is almost zero for single young women; the degree of state dependence is lower than that

for developed countries. Second, while education increases participation, college education

has negative effects for women in 40’s or above. Third, marriage has a very high negative

short-term effect but a positive long-term effect. These findings have a number of policy

implications. First, rather than college education, junior college education more geared for

job skills should be supported. Second, policy efforts to increase female labor participation

should be directed at women of relatively high age (40 or above) or married.
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1. Introduction

For a choice variable, state dependence has an important implication: once a choice

is made, then the subject is “hooked on” and the same choice is likely to be made in future.

For female labor supply, this means, once a woman makes the choice of working (versus non-

working), the simple fact that she works now will increase the likelihood that she works in

future, with the other things held constant. In this case, if the government wants to increase

female labor supply, then the policy effort should be directed to increasing early participation

rates rather than to increasing the work hours of working females, because once women start

to work they will just keep working. This has much in common with advertising effect on

sales: under state dependence, consumers get hooked on the product once they consume it,

and the effect of one-shot advertising will last long with lesser need for follow-up advertising.

Formally, let 1[A] = 1 if A holds and 0 otherwise, and suppose

y∗it = βyyi,t−1 + x
0
itβ + vit, vit = δi + uit, yit = 1[y

∗
it > 0],

(x0it, yit) is observed, i = 1, ...,N, t = 1, ..., T , iid across i, (1.1)

where yit = 1 denotes that female i works at time t, xit is a regressor vector with its first

component being 1, δi is a time-constant error (also called ‘individual effect’ or ‘unobserved

heterogeneity’), uit is a time-variant error, and βy and β are conformable parameters. If

βy 6= 0, there exists a state dependence.
State dependence in female labor supply can arise for a number of reasons. First,

preference for work (versus leisure) can be intertemporally non-separable: leisures at two

time points can be complements or substitutes. Second, job-search cost may differ depending

on work or no-work status: for working women, the search cost for the current job would

be smaller than for non-working women, but the search cost for outside jobs may be higher.

Third, human capital accumulation may differ: working women may have higher human

capital that is good for any job, or they may accumulate only the job-specific human capital

and lose the human capital good for other jobs. Fourth, the work status may have signaling

(or scarring) effect about productivity of the female. Taken together, state dependence can be

positive or negative. But the literature all points to positive effects of substantial magnitudes.

Just like most things in life, the temporal behavior seems to be positively correlated.
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Whatever the reason for state dependence may be, observationally, state dependence

shows up as persistence of one choice. But there is another source of choice persistence

: temporal dependence of error terms. A high COR(vi,t−1, vit) implies choice persistence,

and COR(vi,t−1, vit) can be high for two reasons. One is because vi,t−1 and vit share δi,

and the other is because COR(ui,t−1, uit) is high. Which is the more important depends on

V (δi)/V (uit) (or V (δi)/{V (δi) + V (uit)}). In total, we can think of three sources for choice
persistence: βy 6= 0, V (δi)/V (uit) 6= 0, and COR(ui,t−1, uit) 6= 0; choice persistence can result
also from persistence in xit, but this will be ignored because xit can be controlled for. For

reasons to be given later, we will consider only the first two sources for our empirical work –

state dependence and unobserved heterogeneity– assuming that ui1, ..., uiT are independent.

For policy-wise, unobserved heterogeneity has a different implication from state de-

pendence: the policy does not work unless it changes the individual heterogeneity, which

would require more long-term policy outlay instead of one-shot. Separating state dependence

from unobserved heterogeneity cannot be done with cross-section data nor with time-series

data: it requires panel data. In the literature of panel data, there are two types of assump-

tions for δi: one is ‘fixed effect’ where δi is related to xi1, ..., xiT arbitrarily, and the other is

‘random effect’ where δi is independent of xi1, ..., xiT . The terms ‘fixed effect’ and ‘random

effect’ are, however, misnomers because they do not denote what they really are; we will use

the terms ‘related effect’ and ‘unrelated effect’, respectively, following Lee (2002).

There are many papers dealing with state dependence for labor supply using panel

data. We will briefly describe some recent papers in the following (more references can be

found in the papers). But before we proceed, two issues deserve to be mentioned. One

issue is the assumption on δi: in addition to related and unrelated effects, another approach

suggested in Chamberlain (1984) is modeling δi as a linear function of xi1, ..., xiT plus an

unrelated effect ηi; this way, δi is allowed to be related to the regressors (but the relation

is spelled out), and we will call the approach ‘pseudo-related effect’. The other issue is the

initial value problem of how to model the yi1 equation. For this, we list three approaches:

for some parameters α1, ...,αT ,αδ, the three approaches are

(i) yi1 is not random to treat yi1 only as a regressor in the yi2 equation.

(ii) yi1 = 1[x0i1α1+, ...,+x
0
iTαT + vi1 > 0], COR(vi1, vit) ≡ ρv ∀t = 2, ..., T. (1.2)

(iii) yi1 = 1[x0i1α1+, ...,+x
0
iTαT + αδδi + ui1 > 0], COR(ui1, uit) = 0 ∀t = 2, ..., T.
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The first is the simplest but unrealistic. The second is general, but difficult to implement

requiring a high-dimensional integration. The third that falls in between (i) and (ii) in terms

of its strength of assumptions is frequently used in practice as to be seen shortly; V (ui1) ≡ σ21

in (iii) is allowed to differ from V (uit) ≡ σ2u ∀t = 2, ..., T . In (ii) and (iii), α1, ...,αT may

get further restricted in practice; for instance, αt = 0 ∀t 6= 1. For pseudo-related effects, δi
in (iii) is replaced by ηi. Normality assumption has been used for the error terms; for this

reason, we will call a model with (1.1) and (1.2) a “dynamic probit” from now on.

Shaw (1994) uses PSID over 1967-1987 for the U.S. white females; Shaw use three

separate data (single, single-to-married, and married) and allow different coefficients for four

different age groups. Shaw estimates labor participation and work hour equations separately

with lagged work-hour, not lagged participation, in both equations; because of this aspect,

this study is not quite relevant to our study.

Mühleisen and Zimmermann (1994) use the German Socio-Economic Panel over 1984-

1989 for German males. They use an unrelated-effect Maximum Likelihood Estimator (MLE)

under normality assumptions, allowing for COR(ui,t−1, uit) 6= 0 with uit = ξ ·ui,t−1+εit where
ξ is a parameter and εit’s are iid across i and t. This generality, however, poses a multidimen-

sional integration problem in getting the likelihood function, for which a method of simulated

likelihood is used. Mühleisen and Zimmermann’s response variable is 1 − yi,t and they let
1 − yi,t−1 interact with 6 regressors; the estimate for 1 − yi,t−1 is 3.31 (significant). They
find ξ to be about −0.32 (significant). But their estimate for V (δi)/V (εit) = 0.023 (insignif-
icant), which means V (δi)/V (uit) = 0.023/(1 − (−0.32)2) ' 0.026; that is the unobserved

heterogeneity is almost nonexistent. In a strict sense, this means degeneracy in their MLE.

Hyslop (1999) uses PSID over 1979-1985 for married females. Hyslop uses a pseudo-

related effect MLE where δi is specified as a linear function of elements of xi1, ..., xiT plus

an unrelated-effect ηi. The linear function is then absorbed into the regression function of

y∗it, and V (ηi)/{V (ηi) + V (uit)} is identified. The initial value problem is deal with as in

(ii) above, allowing for COR(ui,t−1, uit) 6= 0 with uit = ξ · ui,t−1 + εit. The multidimensional

integration problem due to (ii) and uit = ξui,t−1 + εit is handled with a simulated likelihood

method. Using a dynamic probit model, βy is estimated to be about one, meaning that, as

yi,t−1 changes from 0 to 1, y∗it changes by one standard deviation (SD): a change of two SD

would make yit = 1 almost certain. Hyslop also finds V (ηi)/{V (ηi)+V (uit)} to be about 0.75
to 0.80. Thus, both state dependence and unobserved heterogeneity matter much. As for ξ,
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ξ is estimated to be a small but significant negative number (about −0.22) as in Mühleisen
and Zimmermann (1994).

Arulampalam et al. (2000) use the British Household Panel Survey over 1991-1995

for males; a pseudo-related effect is assumed that δi is a linear function of (1/T )
P
t xit plus

ηi. Arulampalam et al. deal with the initial value problem as in (iii) above, and they use

a two-stage selection correction approach instead of MLE. They find βy to be 1.05 for men

below age 25 and 1.41 for men of age 25 or higher; note that 1.41 SD change in y∗it due to

yi,t−1 changing from 0 to 1 is quite big. As for V (ηi)/{V (ηi) + V (uit)}, the estimate varies
too much depending on the chosen model, not leading to any firm conclusions.

Phimister et al. (2002) use the Canadian Survey of Labor Income and Dynamics

over 1993-1996 for females; unrelated effect is assumed. Phimister et al. deal with the

initial value problem as in (iii) above, and they use a two-stage selection correction approach

instead of MLE as in Arulampalam et al. (2000). Phimister et al. find βy = 1.50 and

V (δi)/{V (δi)+V (uit)} = 0.39 (both are significant). That is, state dependence is strong and
the unobserved heterogeneity accounts for 39% of the total error term variance.

Knights et al. (2002) use the Australian Longitudinal Survey over 1985-1988 for

both males and females; unrelated effect is assumed. They use an unrelated-effect MLE

dealing with the initial value problem as in (iii) above; the genuine MLE is used, not the

two-stage selection correction approach. βy ranges from 0.512 for low-educated males, 0.772

for high-educated males, 0.838 for high-educated females, and 0.903 for low-educated females

(all significant).

Overall, the following remarks are in order to motivate our study. First, βy ranges

from 0.5 to 1.5 depending on the group of subjects in the data (the estimates in Mühleisen and

Zimmermann (1994) are not directly comparable to these numbers, because interaction terms

involving yi,t−1 are used); this fact along with significant interaction terms involving yi,t−1 in

Mühleisen and Zimmermann (1994) calls for inclusion of interaction terms between yi,t−1 and

xit, which is not done in the literature. Second, the (pseudo-) unrelated-effect assumption

and the initial value problem in the literature can be avoided using a recent related-effect

‘dynamic conditional logit (DCL)’ estimator in Honoré and Kyriazidou (2000); the estimator,

however, requires ui1, ..., uiT to be iid, which is thus adopted in the remainder of this paper.

Third, most empirical studies are for developed countries; hence, it will be interesting how

the empirical findings for developed countries hold up for countries like Korea–an industrial
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country growing fast while the traditional barriers for women are still strong.

The rest of this paper is organized as follows. Section 2 describes DCL and show that

interaction terms between yi,t−1 and xit are allowed in the DCL framework; also shown there

are the log-likelihood function for dynamic probits and a three-stage algorithm to speed up

the convergence of dynamic probits. Section 3 describes the data set. Section 4 presents the

empirical findings. Finally, Section 5 concludes.

2. Methodology

In this section, first, we show DCL in Honoré and Kyriazidou (2000). Second, log-

likelihood functions for (pseudo-) unrelated-effect dynamic probits are presented. Third, a

three-stage algorithm to speed up the dynamic probits is shown. To be coherent with the

conditional logit, we may use logistic distribution for uit and δi instead of normal distribu-

tions. But this would mean deviating from the literature too far. Instead, we will turn DCL

estimates to dynamic-probit-comparable estimates by rescaling them properly. Define

xi ≡ (xi1, xi2, ..., xiT )0.

2.1 Dynamic Conditional Logit (DCL)

Suppose

uit’s follow logistic distribution, iid over t and i, and are independent of yi1, δi, xi (2.1)

To understand the generality as well as the limitations of DCL in Honoré and Kyriazidou

(2000), it is necessary to understand the main idea of the estimator. Let

P (yi1 = 1|xi, δi) ≡ p1;
P (yit = 1|xi, δi, yi1, ..., yi,t−1) (2.2)

= exp(βyyi,t−1 + x
0
itβ + δi)/{1 + exp(βyyi,t−1 + x0itβ + δi)}, for t = 2, ..., T ;

note that period 1 model is not specified. Consider two events

A ≡ {yi1 = d1, yi2 = 0, yi3 = 1, yi4 = d4} and B ≡ {yi1 = d1, yi2 = 1, yi3 = 0, yi4 = d4};

the two events differ only in the middle two variables yi2 and yi3.
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Observe

P (A|xi, δi)
= pd11 (1− p1)1−d1 · 1/{1 + exp(βyd1 + x0i2β + δi)} · exp(x0i3β + δi)/{1 + exp(x0i3β + δi)}

· exp(d4(βy + x0i4β + δi))/{1 + exp(βy + x0i4β + δi)},

which has four terms on the right-hand side. The first term is for yi1, the second is for (yi2 =

0)|yi1, the third is for (yi3 = 1)|(yi2 = 0), and the fourth is for yi4|(yi3 = 1). Analogously,

observe

P (B|xi, δi) = pd11 (1− p1)1−d1 · exp(βyd1 + x0i2β + δi)/{1 + exp(βyd1 + x0i2β + δi)}
·1/{1 + exp(βy + x0i3β + δi)} · exp(d4(x0i4β + δi))/{1 + exp(x0i4β + δi)}.

DefineA0, A1, B0, andB1 such that P (A|xi2, ..., xiT , δi) = A0/A1 and P (B|xi2, ..., xiT , δi) =
B0/B1. That is,

A1 = {1 + exp(βyd1 + x0i2β + δi)} {1 + exp(x0i3β + δi)} {1 + exp(βy + x0i4β + δi)},
B1 = {1 + exp(βyd1 + x0i2β + δi)} {1 + exp(βy + x0i3β + δi)} {1 + exp(x0i4β + δi)};

A1 and B1 share the same first term. Although A1 6= B1, if xi3 = xi4, then the last two terms
in A1 and B1 agree to result in A1 = B1, which is the key idea. Hence, under xi3 = xi4, the

denominators A1 and B1 drop out in the following conditional probability that is free of δi:

P (A |xi, δi, A ∪B, xi3 = xi4) = 1/{1 + exp(βy(d1 − d4) + (xi2 − xi3)0β)}.

The conditioning event A ∪B requires yi2 6= yi3 ⇐⇒ yi2 + yi3 = 1.

When xit is discrete, the DCL log-likelihood function isX
i

1[yi2 + yi3 = 1] 1[xi3 = xi4] ln[exp{βy(yi1 − yi4) + (xi2 − xi3)0β}yi2

/{1 + exp(βy(yi1 − yi4) + (xi2 − xi3)0β)}]. (2.3)

The estimator is
√
N -consistent and asymptotically normal as in other MLE’s.

Since δi is removed, DCL allows an arbitrary relation between δi and xi. Also,

interaction between yi,t−1 and xit is allowed. To see this, add yi,t−1z0itβyz (βyz is a parameter

vector and zit is a subvector of xit) to the last two terms of in A1 and B1 to get, respectively,

{1 + exp(x0i3β + δi)} · {1 + exp(βy + z0i4βyz + x0i4β + δi)},
{1 + exp(βy + z0i3βyz + x0i3β + δi)} · {1 + exp(x0i4β + δi)};
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it still holds that A1 = B1 if xi3 = xi4. With interaction terms allowed, the log-likelihood

function becomesX
i

1[yi2 + yi3 = 1] 1[xi3 = xi4] ln[exp{βy(yi1 − yi4) + (yi1zi1 − yi4zi4)0βyz + (xi2 − xi3)0β}yi2

/{1 + exp(βy(yi1 − yi4) + (yi1zi1 − yi4zi4)0βyz + (xi2 − xi3)0β)}]. (2.4)

Although all time-invariant regressors are removed in xi2 − xi3, they may appear interacting
with yi,t−1. Since the SD of the logistic distribution is 1.8, we will divide the DCL estimates

by 1.8 so that they become comparable to those from dynamic probit; this division does not

affect the t-values.

The main restriction of DCL other than (2.1), is xi3 = xi3, which has a number

of consequences. First, if xit is continuous, then a nonparametric smoothing should replace

1[xi3 = xi4]; this slows down the convergence rate of the estimator and makes the estimator

bandwidth-dependent. Second, suppose there is a macro shock that changes the intercept.

Then DCL is not applicable. To see this, let τ t denote the intercept in the regression function

(pulled out of x0itβ), and rewrite the last two terms of A1 and B1 as, respectively,

{1 + exp(τ3 + x0i3β + δi)} · {1 + exp(τ4 + βy + x
0
i4β + δi)},

{1 + exp(τ3 + βy + x
0
i3β + δi)} · {1 + exp(τ4 + x0i4β + δi)}

which are no longer the same even if xi3 = xi4. Third, xi3 = xi4 disallows regressors such as

age or job experience.

One may try to get around the condition xi3 = xi4 by grouping variables. For

continuous variables such as yearly income, essentially this amounts to a nonparametric

smoothing, although this nonparametric aspect is often ignored. For variables such as age

(and job experience), this will not work, because (2.3) shows that xi2 6= xi3 = xi4 is needed,
which cannot hold for age; by grouping, we would be forcing this on age. If age dummies are

used such as age20 for being in the 20’s or not, age20i3 = age20i4 will hold mostly other than

when the age crosses the boundary point 20 or 30. This crossing will cause a bias, which is

likely to be small. If yi,t−1age20it is used, then the condition xi2 6= xi3 is fulfilled mostly by
the temporal variation of yi,t−1. For our empirical analysis with DCL, age dummies will be

used.

Despite the restrictions for DCL, however, if we pick two years during which the

macroeconomic conditions are relatively stable and if age or job experience effect over one
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year is small, then these restrictions may not be too binding for DCL.

2.2 Dynamic Probit

For unrelated effect dynamic probit, the main assumptions are that

δi is independent of ui1, ..., uiT , and (δ, ui1, ..., uiT ) is independent of xi;

ui2, ..., uiT are iid N(0,σ2u) and independent of ui1 that follows N(0,σ
2
1); δi follows N(0,σ

2
δ).

Define

σv ≡ SD(vit) = SD(δi + uit) ∀t = 2, ..., T,

and let Φ and φ denote the N(0, 1) distribution and density function, respectively. Since,

Φ(a)y · {1− Φ(a)}1−y = Φ{a · (2y − 1)},

dividing the period t latent equation by σu and the period 1 equation by σ1, the log-likelihood

function to be used is

X
i

ln[

Z
Φ{(x01α/σ1 + (δ/σδ) · βδσδ/σ1)(2yi1 − 1)} (2.5)

TY
t=2

Φ{(yi,t−1βy/σu + yi,t−1z0itβyz/σu + x0itβ/σu + (δ/σδ)σδ/σu)(2yit − 1)}φ(δ/σδ)σ−1δ dδ ]

where only x1 is used in the yi1 equation; if desired, xi can be used without difficulty. Since

ζ ≡ δ/σδ is N(0, 1), rewrite the log-likelihood asX
i

ln[

Z
Φ{(x01α/σ1 + ζβδσδ/σ1)(2yi1 − 1)} (2.6)

TY
t=2

Φ{(yi,t−1βy/σu + yi,t−1z0itβyz/σu + x0itβ/σu + ζσδ/σu)(2yit − 1)}φ(ζ)dζ.

The identified parameters are

α/σ1, βδσδ/σ1, βy/σu, βyz/σu, β/σu, σδ/σu; (2.7)

the last term σδ/σu shows how important δi is relative to uit.

For pseudo-related effect dynamic probit, consider

δi = x
0
i1µ1+, ...,+x

0
iTµT + ηi, or a simpler version δi = x̄

0
iµ+ ηi.
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Since the former is computationally too demanding, although it can be dealt with in principle

as done in Lee (2002), we adopt the simpler version that includes the restriction µ1 =, ...,=

µT . Substitute δi = x̄
0
iµ+ ηi into (2.5) to getX

i

ln[

Z
Φ{(x01α/σ1 + (x̄0iµ+ ηi)βδ/σ1)(2yi1 − 1)} (2.8)

TY
t=2

Φ{(yi,t−1βy/σu + yi,t−1z0itβyz/σu + x0itβ/σu + (x̄0iµ+ ηi)/σu)(2yit − 1)}φ(η/ση)σ−1η dη ].

With ζ = η/ση, this can be rewritten asX
i

ln[

Z
Φ{(x01α/σ1 + x̄0iµβδ/σ1 + ζβδση/σ1)(2yi1 − 1)} (2.9)

TY
t=2

Φ{(yi,t−1βy/σu + yi,t−1z0itβyz/σu + x0itβ/σu + x̄0iµ/σu + ζση/σu)(2yit − 1)}φ(ζ)dζ.

The identified parameters are (compare to (2.7))

α/σ1, µβδ/σ1, βδση/σ1, βy/σu, βyz/σu, β/σu, µ/σu, ση/σu. (2.10)

In practice, although xit includes both time-constant and time-variant variables, x̄i should

consist only of time-variants; otherwise the time-constant variables would be used twice

as regressors in the same equation. This means that the coefficients for the time-constant

variables in xit are in fact the sum of the actual coefficients plus those for x̄i.

If we treat yi1 as fixed, then we just have to drop the first period likelihood component

in (2.6) or in (2.9). The fixed yi1 assumption is often used in practice; also, comparing the

estimates under fixed yi1 to those under random yi1 will show how sensitive the dynamic

probit is to the initial period.

In short, we will examine five sets of estimates in our empirical section later:

1. DCL: (2.4).

2. unrelated-effect dynamic probit with yi1 fixed: (2.6) with period 1 removed.

3. unrelated-effect dynamic probit with yi1 random: (2.6).

4. pseudo-related-effect dynamic probit with yi1 fixed: (2.9) with period 1 removed.

5. pseudo-related-effect dynamic probit with yi1 random: (2.9).
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Integration for dynamic probit can be done numerically. But this turned out to be

too time-consuming. Instead, we use Monte Carlo integration with the number of random

draws being 10 to save time. As to be shown later, although 10 may sound small, the final

results change little when the number of random draws increases to 35. In principle, the

asymptotic theory for simulated log-likelihood estimation calls for the random draw number

to be infinite. With the number 10, the dynamic probit programs took about two hours on

a pentium four PC; with 35, it took more than a day. Hence, with 35, we use the following

three-stage algorithm to speed up the program.

2.3 Three-Stage Algorithm to Speed Up Dynamic Probit

The integration in (2.9) can be done either numerically or with a Monte Carlo simula-

tion. Either way, maximizing (2.9) can be rather time-consuming. But there is a three-stage

algorithm that pretty much halves the computation time. If the computation takes a minute,

halving it would not be a big deal, but if the computation takes several hours as in our case,

then halving it would be helpful.

The idea goes as follows. First, estimate the initial period parameters with a simple

probit. Second, estimate the remaining parameters while keeping the first-stage parameters

intact. Third, take one “Newton-Raphson” step from the second-stage estimates. The esti-

mator obtained this way is asymptotically as efficient as the single-stage MLE. In practice,

however, the third stage may be iterated until convergence instead of taking just one step.

A complicating factor for this three stage idea is that δ is not conditioned on in the initial

period equation at the first stage; this is explained in the following.

Since the first period error term without the normalization by σ1 is βδη + u1 in the

pseudo-related effect, define

σ2a ≡ V (βδη + u1) = β2δσ
2
η + σ21 =⇒ (βδση/σa)

2 = 1− (σ1/σa)2. (2.11)

In the first-stage probit, since the error term is βδη + u1 when δ is not conditioned on, σa

is the right normalizing scale factor, differently from σ1 appearing in (2.9) where δ is first

conditioned upon before finally integrated out. The first stage probit yields dα/σa and dµβδ/σa.
In the second stage, we need to maximize (2.9) with the first stage estimates plugged
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in. For this, rewrite the initial period likelihood contribution in (2.9) as

Φ{(x01(α/σa)(σa/σ1) + x̄0i(µβδ/σa)(σa/σ1) + ζ(βδση/σa)(σa/σ1)) · (2yi1 − 1)}
' Φ{ [x01 dα/σa(σa/σ1) + x̄0i dµβδ/σa(σa/σ1) + ζ{1− (σa/σ1)−2}1/2(σa/σ1)] · (2yi1 − 1) };

only σa/σ1 (> 1) needs to be estimated. Thus, the estimated parameters in the second-stage

are

σa/σ1, βy/σu, βyz/σu, β/σu, µ/σu, ση/σu. (2.12)

In the third stage, combine the first-stage probit and the second-stage estimates to

get (2.10), to take one Newton-Raphson step from the estimates; better yet, the third stage

can be iterated fully as mentioned above.

3. Data and Descriptive Statistics

Our data set consists of the first four waves (1998-2001) of the Korea Labor and

Income Panel Study (KLIPS). Excluding the dropouts, the data set is balanced with N =

3882 for women of age 15-65.

Other than the response variable yit for work or not in year t, the following regressors

are used: age, the number of children aged 1-3 (ch1 ), 4-7 (ch2 ), and 8 -13 (ch3 ), six education

dummies for the final education completion level being primary school (ed1 ), middle school

(ed2 ), high school (ed3 ), junior college (ed4 ), college (ed5 ), and MA degree or higher (ed6 ),

inc for the logarithm of household income other than the female’s own income, mar for

married or not, jtr for any job training or not, and cert for the number of certificates (for

job-related skills). From age, age2 (= age2/100), age20 for being in 20’s or not, age30 for

being in 30’s or not, and age40 for being in 40’s or above are also used as regressors. Ed1 is

the base education case and thus not used in estimation.
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Table 1: Descriptive Statistics

variable mean SD min med max

y 0.457 0.498 0 0 1

age 37.510 12.871 15 37 64

age20 0.210 0.408 0 0 1

age30 0.270 0.444 0 0 1

ch1 0.086 0.294 0 0 3

ch2 0.099 0.309 0 0 2

ch3 0.197 0.475 0 0 3

ed1 0.142 0.350 0 0 1

ed2 0.189 0.392 0 0 1

ed3 0.466 0.499 0 0 1

ed4 0.063 0.268 0 0 1

ed5 0.078 0.268 0 0 1

ed6 0.006 0.075 0 0 1

cert 0.256 0.729 0 0 8

income 3,673 166,772 0 1109 12,000,000

jtr 0.036 0.187 0 0 1

mar 0.752 0.432 0 1 1

Table 1 shows the descriptive statistics over the four years. The labor participation

rate is still relatively low (46%) in Korea. The high-school graduation is the majority. Income

in Table 1 is not in log, but in Korean-Won×10000, which is roughly $8; thus, the median
household income other than the female’s own income is $8872 = 1109× 8. About 75% are

married.

Table 2 shows age-group breakdown of workers for each year; in the last row, the

numbers in parentheses are the number of working women in our data. During 1999-2001, the

shares of teens and 30’s have declined; the shares of 40’s and 60-65 have increased steadily;

the shares of 20’s and 50’s stayed about the same. Forming two groups, 30’s or below and

40’s or above, the first group’s share has declined (55 to 52 to 49) during 1999-2001, whereas

the second group’s share has risen.
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Table 2: Age Group Percentage among Workers for Each Year

age bracket 1998 1999 2000 2001

15~19 2 3 2 1

20~29 20 22 22 23

30~39 32 30 28 25

40~49 28 27 29 31

50~59 15 14 14 14

60~65 3 4 5 6

sum 100 (1560) 100 (1877) 100 (1813) 100 (1902)

Ignore all regressors for a while and consider yit = 1[βyyi,t−1+vit ≥ 0], vit ∼ N(0, 1).
If βy = 0, then yit will take 0 or 1 randomly, depending on whether vit is negative or

positive. Suppose βy = 0.5, which plays no role if yi,t−1 = 0. But once yi,t−1 = 1, then

yit = 1[0.5 + vit ≥ 0]: it will take vit < −0.5 for the woman not to work at t. If βy = 2

and yi,t−1 = 1, then yit = 1[2 + vit ≥ 0]: it will take vit < −2 for the woman not to work
at t, the probability of which is very low. In short, once an woman starts to work (maybe

because vi,t−1 takes a positive value), the stronger the state dependence is, the less likely she

goes back to non-working. With x0itβ in, we get yit = 1[βyyi,t−1 + x
0
itβ + vit ≥ 0], which puts

female i in a less (x0itβ < 0) or more (x0itβ > 0) favorable position to work; other than this

aspect, an analogous interpretation can be given to βy.

Table 3 shows the percentage of labor participation status changes over the four year

period. For instance, during 1998-1999, the proportion of 0→1 in 0→0 or 0→1 is 14/60=0.23
whereas the proportion of 1→1 in 1→0 or 1→1 is 34/40=0.85. This suggests a strong state
dependence, but without xit controlled for, nothing definite can be said, because the group

0→0 or 0→1 may have smaller x0itβ than the other group.

Table 3: Change in Labor Participation

years 0→0 0→1 1→0 1→1 sum

1998-1999 46 14 6 34 100

1999-2000 45 7 9 39 100

2000-2001 45 9 6 40 100

It is well known that income variables are not trustworthy in household surveys, but

in our data, we found out education is also error-ridden: many women’s education level have
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decreased over the years! We corrected these cases by using the minimum eduction level

reported: for examle, if a woman reports college education in wave 1 but only highschool

education in wave 2, then we set the education for wave 1 at highschool education. The

following shows the percentage of corrections we had to make over the total N ×T (15528 =
3882× 4) observations:

ed1 ed2 ed3 ed4 ed5 ed6

percentage corrected 23.4 28.0 48.5 11.6 14.2 1.1

number of observations 3636 4342 7537 1802 2197 169

For instance, the number of differences before correction and after correction in ed1 is

3636, which is 23.4% of 15528. In addition to genuine errors in data collection, we suspect

deliberate misrepresentation by the respondents, with the Korean people being very conscious

of their education levels. Our way of correction using the minimum reported education level

may not be a good one, but without an external validation sample, there is no way to see

which correction method is the best. Although it is unfornatute that this much correction

had to be made, we proceed with the corrected data.

4. Empirical Findings for Korean Female Labor Participation

Table 4 shows the estimation results for DCL. To make the estimates comparable to

the dynamic probit estimates to appear later, we divided the DCL estimates by 1.8 and put

them in the last column of Table 4. We will base our interpretation on those “normalized”

estimates; division by 1.8 does not affect the t-values.

Before we proceed further, two remarks are in order. First, although we tried to

include as many variables to be used for dynamic probit as possible in Table 4, the temporal

variation in some variables is too small for the coefficients to be estimable; hence, those

variables are excluded from Table 4. Second, income is not used for DCL, because it is

a continuous variable requiring smoothing in DCL if used; although income turns out to

be statistically significant for dynamic probits, its coefficient is about −0.2 or smaller in
magnitude. Thus, the bias due to omitting income is likely to be small.

For Table 4, we tried many interaction terms with yt−1 and only ed4 came out some

significance; mar, age20, age30, and age40 are included for later comparisons with dynamic
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probits. Other than for ed4=1, the state dependence is 0.679; 0.679 (with the t-value 1.51)

falls close to the low end of the state dependence numbers seen in the literature for developed

countries. For women with junior college degree (ed4=1), the state dependence is 2.28, which

means almost no change in work status. This may be owing to the fact that the education

at junior college tends to be job-oriented and job-specific. For women in 20’s, the state

dependence is almost zero: 0.106 = 0.679 − 0.573. The state dependence for women in

30’s is also small: 0.161 = 0.679 − 0.518. Other than state dependence, ch2, and jtr have
fairly significant coefficients, comparable to that of yt−1 in magnitude: ch2 decreases labor

participation whereas job-training increases it as one would expect. About 5% of the women

in our data change ed3 (from 0 to 1) and about 1% change in ed5, and probably as the

consequece, ed3 and ed5 have insignificant estimates.

Table 4: Dynamic Conditional Logit

estimate (t-value) estimate/1.8

yt−1 1.222 (1.51) 0.679

yt−1*mar 0.284 (0.50) 0.158

yt−1*ed4 2.882 (2.66) 1.601

yt−1*age20 -1.032 (-1.17) -0.573

yt−1*age30 -0.932 (-0.95) -0.518

yt−1*age40 -0.058 (-0.06) -0.032

ch1 0.751 (1.15) 0.417

ch2 -1.008 (-1.59) -0.560

ch3 -0.240 (-0.57) -0.133

ed3 0.106 (0.12) 0.614

ed5 0.201 (0.17) 0.112

age20*ed3 -0.901. (-1.47) -0.501

age30*ed3 -1.112 (-1.27) -0.617

cert -0.095 (-0.08) -0.053

jtr 1.227 (1.79) 0.682

conditional log-like. -238.111

Table 5 presents unrelated-effect dynamic probit results. The columns with “y1-

fixed” are vastly different from the columns with “y1-random”. The reason is clear: the
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middle columns for the initial period have many significant estimates in terms of magnitude

and t-value. Omitting the initial period equation introduces huge biases for the estimator

treating y1 as fixed; this estimator should not be used. We will base our interpretation of

unrelated-effect dynamic probit on the last two columns of Table 5; the estimates for the

initial period are of ‘reduced-form type’, and as such, they are difficult to interpret.

The magnitude of yt−1 for dynamic unrelated probit is slightly smaller than that

for DCL, but the estimate for yt−1∗ed4 is about five times smaller and insignificant. The
estimate for yt−1∗mar is significant with the magnitude greater than that for yt−1. The
estimates for yt−1∗age20 and yt−1∗age30 are not too far from those for DCL: state dependence
is almost zero for single women in 20’s and 30’s. Age has the usual up and down pattern for

labor participation. The number of young children matters, but judging from the relative

magnitude, not as much as yt−1 and its interaction terms do.

Ed3, ed4 and ed5 are negative, but this is due to the interaction terms between age

dummies and education levels. For instance, the effect of ed5 on labor participation is

for women in 20’s: 1.390 = 2.227− 0.837
for women in 30’s: 0.318 = 1.155− 0.837

for women in 40’s or above: −0.837

That is, for mature women, college education is a hindrance for labor participation.

The estimate for cert is significant but small. If income increases by 100%, then

this will decrease labor participation propensity by 0.031∗SD(error), which is quite small.
Job-training has a significant estimate (0.516) whose magnitude is close to that for DCL

(0.682). Marriage with the estimate −1.327 seems to be most detrimental to female labor
participation. The ratio of the time-invariant error SD to time-variant error SD is about

1.344; that is, the ratio of time-invariant error variance to the total error variance is about

0.643 = 1.3442/(1.3442 + 1), which is close to the estimates seen in the literature.
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Table 5: Unrelated-Effect Dynamic Probit

y1 fixed: est. (tv) y1 random: est. (tv)

yt−1 0.099 (2.88) 0.511 (2.29)

yt−1*mar 0.042 (2.01) 0.688 (4.36)

yt−1*ed4 -0.531 (-6.09) * for initial period * 0.300 (1.55)

yt−1*age20 0.416 (4.66) -0.481 (-2.07)

yt−1*age30 -0.026 (-5.30) -0.474 (-1.82)

yt−1*age40 -0.093 (-0.45) -0.003 (-0.01)

one 1.584 (9.98) -7.603 (-13.58) -6.147 (-13.57)

age 0.457 (4.68) 0.428 (13.80) 0.349 (13.25)

age2 0.049 (0.41) -0.476 (-13.28) -0.399 (-13.45)

ch1 0.243 (3.74) -0.329 (-2.98) -0.238 (-2.84)

ch2 0.945 (4.15) -0.039 (-0.39) -0.052 (-0.73)

ch3 1.119 (6.86) 0.100 (1.39) 0.096 (1.79)

ed3 -0.323 (-1.89) -0.223 (-2.07) -0.254 (-3.10)

ed4 -0.253 (-1.37) 0.201 (0.48) -0.666 (-1.77)

ed5 0.118 (0.63) -0.601 (-1.90) -0.837 (-3.85)

ed6 -2.418 (-10.93) 1.048 (1.98) 0.626 (1.28)

age20*ed3 0.106 (8.39) 0.544 (3.90) 0.252 (2.51)

age20*ed4 -0.126 (-8.81) 0.990 (2.13) 1.837 (4.74)

age20*ed5 -0.107 (-2.19) 1.847 (5.01) 2.227 (8.32)

age30*ed3 -0.325 (-1.45) 0.019 (-0.15) 0.135 (1.43)

age30*ed4 -0.369 (-2.77) -0.711 (-1.50) 0.223 (0.58)

age30*ed5 0.113 (0.42) 0.683 (1.90) 1.155 (4.78)

cert 0.128 (2.12) 0.282 (5.39) 0.163 (4.07)

inc -0.150 (-2.54) -0.082 (-6.32) -0.031 (-4.94)

jtr 0.533 (3.39) 0.027 (0.24) 0.516 (4.30)

mar 0.249 (1.05) -1.104 (-6.71) -1.327 (-8.44)

σδ/σu 0.005 (0.09) 1.291 (16.99) 1.344 (15.15)

log-likelihood -4966.47 -7080.355
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Table 6: Pseudo-Related-Effect Dynamic Probit

y1 fixed: est. (tv) y1 random: est. (tv)

yt−1 0.195 (2.44) 0.571 (2.57)

yt−1*mar -0.206 (-1.51) 0.664 (4.18)

yt−1*ed4 0.305 (1.51) * for initial period * 0.327 (1.67)

yt−1*age20 0.883 (5.45) -0.538 (-2.31)

yt−1*age30 -0.062 (-4.62) -0.547 (-2.09)

yt−1*age40 -0.062 (-0.30) -0.087 (-0.33)

one 1.524 (9.40) -5.828 (-10.19) -4.212 (-9.58)

age 0.506 (5.10) 0.356 (11.10) 0.289 (11.13)

age2 0.086 (0.72) -0.400 (-10.85) -0.335 (-11.50)

ch1 0.320 (4.88) -0.216 (-1.55) 0.030 (0.30) ch1 -1.289 (-6.54)

ch2 1.110 (4.69) 0.045 (0.35) -0.002 (-0.03) ch2 -0.286 (-1.68)

ch3 1.279 (7.68) 0.165 (1.52) -0.135 (-1.67) ch3 0.318 (2.76)

ed3 -0.336 (-1.93) -0.169 (-1.54) -0.201 (-2.42)

ed4 -0.305 (-1.62) 0.235 (0.54) -0.624 (-1.60)

ed5 0.104 (0.55) -0.594 (-1.84) -0.809 (-3.62)

ed6 -2.143 (-9.40) 0.793 (1.14) 1.541 (3.25)

age20*ed3 0.105 (8.27) 0.558 (4.00) 0.356 (3.49)

age20*ed4 -0.127 (-8.90) 1.045 (2.20) 1.988 (4.88)

age20*ed5 -0.136 (-2.80) 2.009 (5.32) 2.411 (8.80)

age30*ed3 -0.399 (-1.71) 0.041 (0.31) 0.187 (1.92)

age30*ed4 -0.419 (-3.06) -0.640 (-1.31) 0.342 (0.84)

age30*ed5 0.189 (0.71) 0.848 (2.34) 1.425 (5.81)

cert 0.178 (2.90) 0.276 (1.56) 0.240 (1.27) cert -0.089 (-0.45)

inc 0.106 (1.35) -0.079 (-4.65) -0.025 (-3.75) inc -0.204 (-7.37)

jtr 0.703 (4.41) 0.051 (0.28) 0.298 (2.40) jtr 2.030 (6.16)

mar 0.362 (1.47) -1.391 (-3.60) -1.485 (-4.46) mar 0.656 (2.07)

ση/σu -0.039 (-0.37) 1.342 (17.53) 1.395 (15.42)

log-likelihood -4915.768 -6988.534

Table 6 presents pseudo-related-effect dynamic probit results. As in Table 5, the
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columns with “y1-fixed” are vastly different from the columns with “y1-random”: omitting

the initial period equation introduces huge biases. As in Table 5, we will base our interpreta-

tion on the columns for “y1-random”. The last two columns of Table 6 show the estimates and

t-values of the averaged time-variant regressors for pseudo-related effect; to save space, the

corresponding estimates for the “y1-fixed” case and for the initial period in the “y1-random”

case are omitted. The coefficients for averaged time-variant regressors can be usually inter-

preted as effects of permanent (or long-term) change; for example, the estimate for inc is the

effect of the ‘permanent income’ which is time-constant, whereas the estimate for inc is the

effect of ‘transitory income’ which is time-variant.

The estimates for yt−1 and its interaction terms are little different from those in Table

5, and the comments made for Table 5 apply to Table 6 with little change; the same is true

of ed3, ed4, and ed5, and their interaction terms with age20 and age30. Age has again the

usual up and down pattern for labor participation.

The estimate for ch1 is almost zero, for the effects are picked up by ch1: ch1 has a

significant negative coefficient that is also large in magnitude (more than twice the effect of

yt−1). Interpreting ch1 as a permanent or long-term component is somewhat misleading: ch1

has a “permanent” component only because T is short; if T is 20, then ch1 should be almost

zero.

If “permanent” income inc increases by 100%, then this decreases labor participation

propensity by 0.204∗SD(error), which is much bigger than in Table 5 but still small in its
magnitude; the effect of transitory income is eight times smaller.

The permanent component jtr of job-training has a significant estimate (2.03) which

is also much larger than the estimates (0.516) for the unrelated-effect probit; the magnitude

is more than three time the estimate for yt−1 (0.571). The transitory component estimate

(0.298) is significant but about seven times smaller in magnitude than the permanent compo-

nent estimate. As in ch1, it is a little misleading to interpret jtr as a permanent component

of job-training, because jtr would be zero for a large T . Instead, jtr should be viewed as

eagerness to work that is a time-constant unobserved trait, whereas jtr is the effect of taking

a job-training newly. The pseudo- related-effect model captures this feature correctly as the

estimate for jrt (0.298) and jtr (2.03) show. In the unrelated-effect model for Table 5, jtr

is omitted, and this omitted variable causes a bias resulting in the estimate for jtr being

0.516 that falls between 0.298 and 2.03. The DCL estimate 0.682 for jtr is much bigger than
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0.298 in Table 6, suggesting that the controlling for the eagerness to work with jtr may be

inadequate.

Interestingly, the long-term marriage effect frommar (i.e., the effect of being married)

is positive and significant; the magnitude is slightly greater than that for state dependence.

In contrast, the transitory component mar has a big negative effect (−1.485), which is the
effect of getting married. In the short-run, marriage is the most detrimental for female labor

participation.

The ratio ση/σu is similar to the ratio σδ/σu. This may look strange, because

supposedly time-invariant components have been pulled out of δ, which would mean a smaller

SD of time-constant error. For this, recall the initial “motivating” equation for related-effect:

δi = x0i1µ1+, ...,+x
0
iTµT + ηi. This shows that, part of uit related to xi1, ..., xiT may have

been taken out as well. That is, σu can also decrease in the pseudo-related-effeect probit.

Finally, Table 7 presents the three-stage estimation results. Since this takes much

less time, as already mentioned, we could afford to increase the random draw number from

10 to 35; also, instead of taking one Newton-Raphson step in the last stage, we did a full

iteration. This “finer” estimation effort resulted in the log-likelihood value increasing slightly

from -6988.534 in Table 6 to -6986.907 in Table 7. Overall, Table 6 and Table 7 are not much

different, and the comments made for Table 6 apply to Table 7 as well; the only exception

seems to be yt−1ed4, which is now significant with a slightly bigger estimate.
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Table 7: Pseudo-Related-Effect Dynamic Probit (three stage)

y1 random: est. (tv)

yt−1 0.538 (3.46)

yt−1*mar 0.663 (4.84)

yt−1*ed4 * for initial period * 0.415 (2.14)

yt−1*age20 -0.580 (-3.90)

yt−1*age30 -0.527 (-4.84)

yt−1*age40 -0.055 (-0.52)

one -5.994 (-10.42) -4.339 (-9.65)

age 0.357 (11.23) 0.292 (11.19)

age2 -0.405 (-11.07) -0.346 (-11.49)

ch1 -0.258 (-1.84) 0.029 (0.29) ch1 -1.449 (-6.67)

ch2 0.037 (0.29) -0.006 (-0.07) ch2 -0.327 (-1.88)

ch3 0.153 (1.41) -0.126 (-1.56) ch3 0.252 (2.22)

ed3 -0.227 (-2.12) -0.248 (-3.07)

ed4 0.189 (0.48) -0.681 (-1.76)

ed5 -0.581 (-1.87) -0.817 (-3.58)

ed6 0.787 (1.18) 1.416 (3.49)

age20*ed3 0.618 (4.37) 0.341 (3.31)

age20*ed4 1.117 (2.55) 1.982 (4.92)

age20*ed5 1.990 (5.46) 2.387 (8.70)

age30*ed3 0.103 (0.77) 0.229 (2.36)

age30*ed4 -0.609 (-1.35) 0.363 (0.88)

age30*ed5 0.728 (2.03) 1.317 (5.25)

cert 0.276 (1.56) 0.237 (1.28) cert -0.095 (-0.49)

inc -0.079 (-4.69) -0.025 (-3.84) inc -0.191 (-7.23)

jtr 0.009 (0.05) 0.297 (2.42) jtr 1.914 (6.30)

mar -1.139 (-3.49) -1.440 (-4.55) mar 0.722 (2.33)

ση/σu 1.291 (17.79) 1.416 (16.02)

log-likelihood -6986.907

5. Conclusions
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In this paper, we estimated dynamic labor participation models for Korean women,

using a number of models ranging from unrelated-effect, pseudo-related effect, to related-

effect models. Despite the differences in the models, we obtained more or less coherent results

across the models, and the following findings emerged. Lagged response yt−1 matters much

with unobserved heterogeneity allowed for. Also, yt−1 interacts with a number of variables:

marriage dummy, junior (technical) college dummy, and age group dummies for 20’s and 30’s.

The state dependence is about 0.6, and 0.2 to 0.7 higher for married, about 0.5 to 0.6 smaller

for women in 20’s or 30’s; thus, almost no state dependence for single young women. The

level of state dependence falls near the low end of the state dependence estimates seen in the

literature for developed countries. Junior college education increases state dependence at least

by 0.3. Job-training and college education increase labor participation, but college education

can be a hindrance for women in their 40’s or higher. The transitory effect of getting married

is highly negative (-1.4) whereas the long-term effect of being married is positive (about 0.7).

These findings lead to policy implications: junior college education more geared for job skills

be supported, and policy efforts to increase female labor participation be directed at women

of relatively high age. On the methodological front, we suggested a three-stage estimator to

reduce the computation time in dynamic probits, and showed that the estimators treating

the initial period response as fixed are highly biased and should not be used.
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